|
Все стадии перехода от состояния максимальной энтропии, описываемого условиями (3.4), (3.5), (3.6), к состоянию жесткой детерминации, которому соответствуют условия ( 3.9 ) + (3.13) можно представить в виде дуги, соединяющей исходное состояние Н с конечным состоянием К (рис. 2).
На рис.3 изображена расширяющаяяся иерархическая спираль, которая может служить моделью формирования иерархических упорядоченных структур. Пусть нижний уровень этой спирали (п = 0) соответствует начальному алфавиту, состоящему из N0 различных элементов (букв, атомов, нуклеотидов и др.).
рис. 3 Тогда на уровне N = 1 из этого алфавита можно составить N1 «слов». Если каждое слово состоит из K1 букв, то из N0 букв можно составить число слов, равное: N1 = N0K1 (3.14) Соответственно, на уровне п = 2 из N1 «слов» можно составить количество «фраз», равное: N2=N1K2=N0K1K2 (3.15) где Кг - число входящих в каждую «фразу» «слов» Для упрощения математических выражений мы уже приняли одно допущение, сказав, что все слова содержат одинаковое количество букв (К1), а все фразы содержат одинаковое количество слов (К2). Очевидно, что в реальных системах (например, в письменных текстах ) эти условия не соблюдаются. Однако для выполнения общих свойств нашей информационно -энтропийной модели подобные упрощения вполне допустимы, поэтому мы введем еще одно допущение: K1 = К2 = К (3.16) Подставив (3.16) в (3.15), мы получим : N2=N0K2 (3.17) Проводя аналогичные операции для любой (п-ой) ступени при условии: K1 = K2 = … = Кп = К, получим: Nn = N0K2 (3.18) Рассмотрим пример, иллюстрирующий увеличение разнообразия (числа различимых элементов) с переходом на более высокие уровни изображенной на рис . 3.3 спирали в соответствии с формулами (3.14) + (3.18). Если алфавит (уровень п = 0) содержит 30 букв (N0 = 30), а каждое «слово» искусственного текста состоит из 6 букв (К = 6), то общее число таких «слов» составит: N1 = N0K1 = 306 = 729 ·106 Среди указанного количества «слов» большинство составят бессмысленные или даже непроизносимые «слова» (из 6-ти гласных, 6-ти согласных и т.п.). Но если хотя бы 0,01% от общего числа буквенных комбинаций составят осмысленные слова, общий лексикон составит 72 900 слов. Еще более прогрессивно возрастает число комбинаций с переходами на более высокие уровни n = 2, п = 3 и т.д. Для определения возрастания информационной емкости по мере перехода на более высокие уровни изображенной на информационно-энтропийной спирали напомним , что максимальное количество структурной информации A/s' накапливается при переходе от Нr′ = Нmax к Нr′′ = 0, т.е. равно: D IS = Нr′ – Нr′′ = Hmax Величина максимальной энтропии для п - ой ступени определяется как: Нпmax = log Nn = Кn log N0 (3.19) Сопоставляя величину Нпгнх с величиной энтропии ступени n = О H0max = log N0 (3.20) убеждаемся, что в результате перехода с уровня n = 0 на уровень n , максимальная энтропия возросла в Кn раз : Нпmax =Кn Н0max (3.21) При переходе от исходного состояния Н в конечное состояние К энтропия уменьшается от Нr = Нmax до Нr = 0, а величина накапливаемой системой информации соответственно возрастает от I=0 до D IS = Нmax (см. рис 1). При переходе с уровня n = О на уровень n в соответствии с увеличением энтропии в Кn раз увеличивается значение DISmax то есть возрастает потенциальная емкость: (D ISmax)0 = Kn(D ISmax)0 (3.22) В качестве примера подсчитаем с помощью формулы (3.22), как будут возрастать размеры витков спирали по мере увеличения номера ступени п . Приняв условно диаметр витка при n = 0 за 1 см., получим размеры вышележащих витков, сведенные в таблицу 2. Таблица 2 | |||||||||||||||||||||
п |
1 |
2 |
3 |
4 |
5 |
6 |
||||||||||||||||
Диаметры витков в см. |
1 |
6 |
36 |
216 |
1296 |
7776 |
Таблица 2 дает наглядное представление о степени прогрессивности роста информационной емкости по мере перехода на вышележащие витки. Нетрудно заметить, что при n = 3 , размеры витка (36 см.) близки к размерам раскрытой книжки, при n = 5 – к размерам довольно просторной залы (с диаметром 12,96 м ) , а при п = 6 – к размерам городской площади (с диаметром 77,76 м ).
Вследствие роста информационной емкости система, поднимаясь в процессе развития на все более высокие уровни иерархической спирали и постоянно стремясь к состоянию жесткой детерминации, оказывается тем дальше от этого состояния (в смысле потенциальной возможности накопления информации), чем больше витков в этой спирали ей удается пройти.
Как уже отмечалось, системы в своем развитии, как правило, не достигают состояния жесткой детерминации. Условием их динамичного равновесия оказывается сочетание частично детерминированных , а частично вариабельных (вероятностых) внутренних связей. Соотношение степени детерминации и вариабельности внутренних связей может быть выражено количественно как отношение величины остаточной энтропии Нr к количеству накопленной и сохраняемой структурной информации D IS:
G =
Hr
(3.23)
D IS
где G – коэффициент стохастичности (вариабельности, гибкости) внутренних связей.
Оптимальным соотношением жесткости и гибкости внутренних связей Gopt оказывается такое соотношение, которое соответствует степени вариабельности условий внешней среды.
Результаты исследований статистических свойств письменных текстов дали близкие результаты для всех европейских языков:
G @ ¼
Очевидно, эта величина G является для языка оптимальной, так как она характеризует соотношение, возникшее в результате эволюционного развития языка. Будучи величиной статистической, она может варьироваться в зависимости от характера текста: для служебных бумаг и инструкций G < Gopt, для поэтических текстов G > Gopt.
Чем больше величина G, тем менее избыточным будет текст. Избыточность текста характеризуется коэффициентом избыточности R, определяемым как:
R =
Hmax - Hr
=
D IS
(3.24)
Hmax
Hmax
Сопоставляя (3.23) и (3.24). можно выразить величину G через R как:
G =
1 – R
(3.25)
R
ИНФОРМАЦИЯ И ЭНЕРГИЯ
Для выявления взаимосвязи структурной информации с внутренней энергией систем воспользуемся уравнением Гельмгольца:
U=F+ST (4.1)
где: U - внутренняя энергия ;
F - свободная часть внутренней энергии ;
ST - связанная (энтропийная ) часть внутренней энергии ;
S - физическая энтропия ;
Т - абсолютная температура.
В состоянии термодинамического равновесия вся внутренняя энергия становится «энтропийной», а сама энтропия достигает максимальной величины[3].
Таким образом , при достижении равновесия достигается условие:
F=0 (4.2)
из которого, согласно (4.1) следует:
U = Smax T (4.3)
или:
Smax =
U
(4.4)
T
Преобразуем выражение (4.1), поделив левую и правую части уравнения на Т:
U
=
F
+ S
(4.5)
T
T
Подставляя (4.4) в (4.5) и перенося член S в левую часть с противоположным знаком, получаем :
Smax – S=
F
(4.6)
T
Для дальнейшего рассмотрения к входящему в выражение члену S добавим индекс r, имея в виду, что Sr – это та реальная энтропия, внутренняя энергия которой определяется выражением (4.1).
Учитывая, что в соответствии с соотношением (1.4)
S = K H (4.7)
приведем выражение (4.6) к виду:
F
=
K ( Hmax – Hr )
(4.8)
T
где К – постоянная Больцмана;
Нтах – максимальная информационная энтропия ;
Нr – реальная информационная энтропия .
Сопоставляя (4.8) с ранее полученным выражением (2.7) получаем :
F
=
KD IS
(4.8)
T
Полученное соотношение свидетельствует о том, что при неизменном значении температуры Т свободная часть внутренней энергии F зависит только от количества сохраняемой системой структурной информации D IS.
Другими словами, свободная энтропия F – это часть энергии, которая расходуется на определяющие структурную организацию системы межэлементной связи.
Г.Гельмгольц назвал эту часть внутренней энергии «свободной энергией» имея в виду, что эту энергию, в отличие от составляющей внутренней энергии ST , можно «освободить» для той или иной полезной работы. Такое «освобождение» осуществляется путем разрушения внутренних связей, определяющих структуру используемых для этой цели систем: сжигания органических веществ (нефти, угля), разрушения атомов или атомных ядер и т.п.
Введем понятие потенциального коэффициента полезного действия η, показывающего, какая часть внутренней энергии может быть, в принципе, использована для полезной работы:
η =
F
(4.10)
U
С учетом (4.4) и (4.9) выражение (4.10) приводится к виду :
η =
DIS
(4.10)
Hmax
Сопоставляя (4.11) с выражением (3.24), приходим к выводу, что потенциальный КПД η равен коэффициенту избыточности R.
Рассмотрим два крайних состояния систем, одному из которых соответствуют условия D IS = 0 (состояние равновесия), а другому – D IS = Нmax (жесткая детерминация) .
В соответствии с выражением (4.11) в состоянии равновесия η = 0 (поскольку вся внутренняя энергия в этом случае оказывается не «свободной», а «связанной», т.к. F = 0, a U = Smax T).
При жесткой детерминации (D IS = Нmax) в соответствии с (4.11), η = 1.
Это условие означает, что вся внутренняя энергия расходуется только на сохранение межэлементных структурных связей, поэтому структура такой системы останется неизменной (жестко детерминированной ) до тех пор, пока система не разрушится под влиянием изменившихся условий внешней среды.
При неизменных внешних условиях и при η = 1 осуществляется «вечное движение», примером которого может служить жестко детерминированное движение небесных светил и планет.
ЗАКЛЮЧЕНИЕ.
Подводя итог всему, что было сказано выше, отметим, что по мере того, как рациональная наука все глубже и глубже постигает сложность организации существующих в мире систем она все в большей мере осознает недостаточность ранее признанных редукционистских концепций. Поиски источников информации определяющей структуры и функции сложных систем, приводят науку к необходимости создания телеологических концепций, то есть, в конечном счете, к признанию некого организующего начала, которое и есть не что иное, как проявление воли Творца.
СПИСОК ЛИТЕРАТУРЫ
1. Седов Е., Кузнецов Д. В начале было Слово… – СПб., 1994.
2. Шеннон К.Е. Математическая теория связи. Работы по теории инфор -мации и кибернетике., М, 1963.
3. Шеннон К. Е. Бандвагон. /Работы по теории информации и кибернетике/, М., 1963.
4. Бриллюэн Л. Научная неопределенность и информация, М.,1966.
5. Винер Н. Кибернетика, или Управление и связь в животном и машине. М,1968.
6. Аптер М. Кибернетика и развитие М. 1970.
7. Седов Е.А. Взаимосвязь информации, энергии и физической энтропии в процессах управления и самоорганизации. Информация и управление. М., Наука, 1986.
8. Седов Е.А. Эволюция и информация. М., Наука, 1976.
9. Шеннон К. Е. Предсказание и энтропия английского печатного текста.
10. Пригожий И., Ствнгврс И. Порядок из хаоса. М.. Прогресс, 1986.
11. Тейяр де Шарден Феномен человека. М., Наука, 1987.
[1] Зависимость вероятностей последующих событий от предыдущих определяется в теории вероятностей термином «корреляция».
[2] Близкое к указанному сочетание избыточной и непредсказуемой информации было затем получено в результате анализа тестов на русском и ряде европейских языков.
[3] Данное состояние относится к категории теоретических абстракция, поскольку при достижении термодинамического равновесия не разрешается структура элементарных частиц.
Новости |
Мои настройки |
|
© 2009 Все права защищены.