Меню
Поиск



рефераты скачать Элегазовый генераторный выключатель 10 кВ, 63 кА, 8000 А

Такому требованию в полной мере удовлетворяют гидравлические приводные устройства, имеющие малые занимаемые объемы, малую массу, гибкое регулирование динамических характеристик.

Известны гидромеханические приводы, в которых в качестве носителя запасенной энергии для создания высокого давления рабочей жидкости используются следующие аккумуляторы запасенной энергии:

-пневмогидроаккумуляторы высокого давления;

-пневмогидроаккумуляторы низкого давления;

-аккумулятор энергии, запасаемой в пакете сжатых пружин.
 Пневмогидроаккумулятор высокого давления состоит из стального цилиндра, двух крышек и поршня с уплотнениями. Поршень разделяет цилиндр на две полости - газовую и жидкостную. Газовую полость заполняют сжатым азотом, а жидкостную соединяют с гидравлической системой. Давление сжатого азота соответствует давлению рабочей жидкости в гидроцилиндре привода.

Пневмогидроаккумулятор низкого давления представляет собой сильфон, герметично закрытый с торцов крышками, заполненный сжатым газом, давление которого значительно ниже давления рабочей жидкости в гидроцилиндре.

Привод, в котором в качестве системы накопления энергии, или аккумулятора, используется сжимаемый пакет тарельчатых пружин, действует следующим образом: накопленная энергия сжатого пакета тарельчатых пружин передается в гидравлическую систему рабочей жидкости в гидроцилиндр привода.

Гидропривод работает на использовании энергии сжатого газа (азота), находящегося в двух энергоблоках.

Рассмотрим схему ГУ, представленную на рис. 4.1. в исходном положении пневмогидроаккумулятор 1 постоянно связан с полостями ,  гидроцилиндра, и давление МПа.

При подачи сигнала на электромагнит ЭМ гидроклапана 2а полости  и  соединяются через сливную гидроцепь в – с с баком 4, и происходит отвод жидкости из-под поршня ГУ.

Одновременно жидкость из пневмогидроаккумулятора поступает в объем А по напорной гидроцепи а – б. Под действием усилия  поршень движется вниз. Поршень ГУ имеет тормозную втулку, и, по мере перемещения поршня, втулка перекрывает сечение , что вызывает увеличение местного гидравлического сопротивления . Давление в объеме  растет и в конце пути скорость поршня уменьшается до допустимой величины. Возврат поршня в первоначальное положение происходит после срабатывания электромагнита ЭМ и соединения объемов  и  с пневмогидроаккумулятором через клапан 2б. Рост давления в объеме  вызывает движение поршня 3 вверх.


Рис. 4.1. Схема гидравлического устройства


Обычно объем пневмогидроаккумулятора достаточно велик, чтобы обеспечить стабильность  для выполнения операций. Подзарядку пневмогидроаккумулятора обеспечивает маломощная насосная станция.


4.1 Анализ начального режима разгона ГУ


Быстродействие ГУ на начальном этапе движения поршня зависит от выбора схемы ГУ, исходных параметров и конструктивных размеров ГУ.

Уравнение движения выглядит следующим образом:

 , (4.1)


где  – рабочие площади поршня;  – сечение пускового клапана;

 – суммарное противодействующие усилие.


 ,                                                              (4.2)


где  - площадь поршня,  - площадь штока

Установившаяся скорость поршня:


 , (4.3)


где  - активное усилие привода,  - противодействующее усилие, - коэффициент сопротивления клапана, - плотность жидкости.

Эквивалентная длина трубопровода:


, (4.4)


где – коэффициент трения,  - диаметр проходного отверстия клапана

Масса жидкости приведенная к рабочей площади поршня:

, (4.5)


где  - проходное сечение отверстия клапана.

Время разгона поршня


, (4.6)


где  - суммарная масса.


4.2 Анализ торможения гидропривода


В высокоскоростных ГУ электрических аппаратов используется торможение «по пути», когда по ходу поршня тормозной хвостовик на поршне ГУ или тормозная втулка уменьшает проходное сечение окна в тормозном устройстве. Местное гидравлическое сопротивление увеличивается, и в результате повышения давления жидкости в объеме сжатия скорость поршня уменьшается. Изменение щели окна на этапе торможения вызывает увеличение потерь давления.

Среднее давление на этапе торможения


 (4.7)


Рекомендуемое значение не должно превышать ,

где  - сечение проходного окна

Путь торможения:


 (4.8)


Длина хвостовика:


, (4.9)


где  - длина цилиндрической части хвостовика ,  - длина начального участка закругления.

Время торможения:


 (4.10)


Геометрическое сечение начальной щели:


 (4.11)


Геометрическое сечение начальной щели:


, (4.12)


где =0,5

Геометрическое сечение профильной части, для =0,5


 (4.13)


4.3 Расчет трогания и торможения гидропривода


Определить время разгона поршня ГУ на ход =200 мм при исходном давлении в пневмогидроаккумуляторе =30 МПа. Масса металлических подвижных частей ГУ =100 кг, диаметр поршня =75 мм, диаметр штока =35 мм, противодействующие усилие  Н, диаметр проходного отверстия клапана КП =25 мм, коэффициент сопротивления клапана =5, плотность жидкости =850

Определим площадь поршня


 ,


и площадь штока


 .


Зная которые определяем рабочую площадь поршня:


 .

Проходное сечение отверстия клапана КП


 .


Установившаяся скорость поршня



Будем считать только потери давления в клапане КП и примем, что течение жидкости через него турбулентное, а коэффициент трения =0,025. Далее определим эквивалентную длину трубопровода, замещающего это местное гидросопротивление.


м.


Масса жидкости, приведенная к рабочей площади поршня


 кг.


Время разгона поршня на =15 мм.


Определить путь торможения, время торможения и основные размеры хвостовика для ГУ при равнозамедленном движении. Установившаяся скорость перед этапом торможения =8, коэффициент сопротивления щелевого зазора =3, проходное окно имеет диаметр =20 мм.

Максимальное допустимое давление в объеме сжатия

МПа

Путь торможения


м.


Время торможения


с.


Принимая цилиндрическую часть хвостовика 3 мм, и начальный участок закругления м окончательно получим длину хвостовика


мм.


Сечение и диаметр начальной щели (x=0)

.

м.


Сечение и диаметр начальной щели(=0,5)


м.


Сечение и диаметр профильной части


м.


Выводы


Гидравлические приводные устройства являются наиболее мощными, энергоемкими приводными устройствами, от других приводных устройств отличаются малым объемом и массой, гибким регулированием динамических характеристик. Как правило, ГУ применяют в наиболее ответственных силовых выключателях.

Определены следующие размеры и параметры ГУ:

Рабочую площадь поршня , диаметр поршня =75 мм, диаметр пускового клапана =25 мм, хвостовик 3,7 мм (начальный диаметр), 15 мм (конечный диаметр), максимальное давление на этапе торможения =45 МПа.

Время разгона: =7,9 мс, время торможения: = 4,3 мс.

Заключение


В данной работе был рассмотрен элегазовый генераторный выключатель 10 кВ и ток отключения 63 кА.

Дан краткий обзор конструкции, целесообразности производства и особенности эксплуатации этих выключателей. Рассмотрены их достоинства и недостатки. Элегазовые выключатели обладают значительными преимуществами, перед воздушными, такими как меньшие габариты и количество деталей, меньше интенсивность отказов, больше межремонтный срок и срок службы.

Проанализировано взаимодействие выключателя с сетью. Были рассмотрены параметры перехдного восстанавливающегося напряжения для 100% к.з. Была проанализирована стойкость при сквозных токах к.з., а также рассмотрено отключение малых индуктивных токов.

В третьей главе рассмотрено дугогасительное устройство выключателя, а также принцип работы. На основании исходных данных произведен предварительный расчет времени срабатывания выключателя и давление в камере сжатия. Разработана математическая модель дугогасительного устройства. Произведен численный расчет параметров на ЭВМ. Время срабатывания 23-25 мс.

В четвертой главе произведен расчет гидравлического приводного устройства с торможением «по пути». Определены геометрические размеры основных элементов, время разгона 7,9 мс и время торможения 4,3 мс.

Результаты расчета и анализа показывают, что элегазовые генераторные выключатели имеют большую перспективу использования в России. В этом случае примером являются зарубежные фирмы, которые с успехом создают и используют элегазовые генераторные выключатели во всем мире.


Список литературы


1.Электрические аппараты высокого напряжения. Учебное пособие для вузов. Под редакцией Г.Н. Александрова. – Л.: Энергоатомиздат. Ленингр. Отд-ние, 1989.-344с.

2.Проектирование электрических аппаратов. Учебник для вузов. Под редакцией Г.Н. Александрова. - Л.: Энергоатомиздат. Ленингр. Отд-ние, 1985.-448с.

3.Теория электрических аппаратов. Учебник для вузов. Под редакцией проф. Г.Н. Александрова. 2-е изд., перераб. и доп. СПб.: Изд-во СПбГТУ, 2000. 540с.

4.Коммутационные аппараты для главных цепей генераторов. Бронштейн А.М. - ВНИИ информации, 1982.

5. Генераторные выключатели и аппаратные комплексы высокого напряжения. Н.М. Адоньев, В.В. Афанасьев, А.Ш. Локш. – СПб.:Энергоатомиздат: С-Петербургское отд-ние 1992.-160с.

6. Электрические аппараты высокого напряжения с элегазовой изоляцией. Под редакцией Ю.И. Вишневского. – СПб.: Энергоатомиздат. СПб. отд.-ние 2002.-728с.

7. «Условия отключения генераторного блока 800 МВт выключателем нагрузки КАГ-24» Журавлев С. В., инж., КузьмичеваК.И., канд. техн. Наук. ОАО Тюменьэнерго - Научно-исследовательский институт электроэнергетики (ВНИИЭ). – Электрические станции. Энергопрогресс. №2 2004г.

8. ГОСТ 525665-2006 Выключатели переменного тока на напряжение от 3 до 750 кВ. Общие технические условия. – Стандартинформ, 2007.-67с.

9. Каталог фирмы Multi-Contact (№6), 2002.

10. Воздушные выключатели. В.В. Афанасьев, Ю.И. Вишневский. – Л.: Энергоатомиздат. Ленингр. Отд-ние, 1981.-384с

11. О коммутации тока при размыкании одной из двух параллельных цепей электрических аппаратов. Кандидат техн. наук Н. Н. НИКИФОРОВСКИЙ -Электричество №12, 1959.

12. Электрические аппараты управления. Таев И.С. – Высшая школа: Москва 1984г.

13. Генераторные выключатели в цепи мощных энергоблоков и требования, предъявляемые к ним ЗОРИН Л.М. (ОАО «Гидропроект»), ПОДЪЯЧЕВ В.Н. (ОАО «Институт Энергосетьпроект»),ШЛЕЙФМАН И.Л. (АББ Электроинжиниринг) - «ЭЛЕКТРОТЕХНИКА» № 11/03.

Приложение 1. Текст программы расчета ДУ и графики результатов расчета.


INTEGER*2 npoint/10000/,ncurv/5/,k3,i

REAL,ALLOCATABLE:: XARR(:),YARR(:,:)

REAL,ALLOCATABLE:: XARR1(:),YARR1(:,:)

REAL delenx/1.3/,deleny/1.3/,alfa/0/,alfa2/1/,w/314/,fi/0.0/,t,AMax

LOGICAL*1 poligrf/.FALSE./

DIMENSION Y(4),DY(4)

DIMENSION XOD(10),SILA(10)

DIMENSION XD(10),SSLA(10),TEMP(20),TEMP2(20),CP(20),RO(20),TEMP3(20),zh(20)

COMMON P0,P,S,S1,V,AM,AL,U,SS,ALX,alfa,alfa2,XOD,SILA,XD,SSLA,alx1,ALK,TEMP,CP,TEMP2,RO,CPVUX,ROVUX,TEMP3,zh,h

common /comA/ w,AMax NAMELIST/DATA/S,S1,V,P0,AM,AK2,AL,R,AMax,U,alx1,ALX,ALK,Y,XOD,SILA,XD,SSLA

NAMELIST/DATA2/TEMP,CP,TEMP2,RO,TEMP3,zh

OPEN(1,FILE='aa52.inp')

READ(1,NML=DATA)

READ(1,NML=DATA2)

WRITE(*,NML=DATA)

WRITE(*,NML=DATA2)

ALLOCATE ( XARR(npoint),YARR(NCURV,npoint),STAT=I)

ALLOCATE ( XARR1(npoint),YARR1(NCURV,npoint),STAT=I)

 IF (I.NE.0) STOP'error'

                    K3=0

 OPEN(3,FILE='results.txt')

X=0.

99 CONTINUE

 Ht=0.0001

          K3=K3+1

          CALL RKYT(Y,Ht,X,DY)

 WRITE(*,*) 'X=',X,'Y=',Y

 XARR(K3)=X

 YARR(1,K3)=-Y(1)

 YARR(2,K3)=Y(2)

 YARR(3,K3)=Y(3)

 YARR(4,K3)=Y(4)

 YARR(5,K3)=-SS


 XARR1(K3)=Y(4)

 YARR1(1,K3)=Y(3)/(Y(4)*h*ROVUX)

 YARR1(2,K3)=CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX))

 YARR1(3,K3)=0

 YARR1(4,K3)=0

 YARR1(5,K3)=0

 WRITE(3,15)X,Y(1),Y(2),Y(3),Y(4),P,SS,CPVUX,ROVUX

15 FORMAT(2X,G12.4,8(2X,G8.3))


IF(Y(1)>=ALK)then

         CALL EGRAFIC (K3,XARR,NCURV,YARR,DELENX,DELENY,poligrf)

         CALL EGRAFIC (K3,XARR1,5,YARR1,DELENX,DELENY,poligrf)

 STOP

endif


                  

         goto 99

 END


 SUBROUTINE FN(Y,X,DY)

 DIMENSION Y(4),DY(4)

 DIMENSION XOD(10),SILA(10)

 DIMENSION XD(10),SSLA(10),TEMP(20),TEMP2(20),CP(20),RO(20),TEMP3(20),zh(20)

 COMMON P0,P,S,S1,V,AM,AL,U,SS,ALX,alfa,alfa2,XOD,SILA,XD,SSLA,alx1,ALK,TEMP,CP,TEMP2,RO,CPVUX,ROVUX,TEMP3,zh,h

 Z=0.

                   CALL LINAP(10,Y(1),XOD,SILA,P)

                   CALL LINAP(10,Y(1),XD,SSLA,SS)

                   CALL LINAP(20,Y(4),TEMP,CP,CPVUX)

                   CALL LINAP(20,Y(4),TEMP2,RO,ROVUX)

                   CALL LINAP(20,Y(4),TEMP3,zh,h)

 IF(P0/Y(3)>=0.59)then

 Z=SQRT(abs(2.*(CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX)))/(((CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX)))-1)*(Y(3)/(Y(4)*h*ROVUX))*Y(4))*((P0/Y(3))**(2./(CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX))))-(P0/Y(3))**(((CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX)))+1)/(CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX)))))))

 

 RAS=SS*Y(3)*Z

 else

 Z=SQRT(abs(2.*(CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX)))/(((CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX)))+1)*(Y(3)/(Y(4)*h*ROVUX))*Y(4))*(2./((CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX)))+1))**(2./((CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX)))-1))))

 RAS=SS*Y(3)*Z

 endif

                  

                   IF(Y(1)<ALX)then

                   B1=0.

                   else

                   B1=1.

                   endif

        

 DY(1)=Y(2)

 DY(2)=(P-S*(Y(3)-P0))/AM

 DY(3)=((CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX)))/(S*(AL-Y(1))))*((1-1/(CPVUX/(CPVUX-Y(3)/(Y(4)*h*ROVUX))))*AD(Y(1))*(B1*B2*(5000.*(Y(1)-ALX)/1.0))*abs(AI(X))+Y(3)*S*DY(1)-(Y(3)/(Y(4)*h*ROVUX))*RAS*B1*Y(4))

                   DY(4)=(-DY(1)*Y(4)/(AL-Y(1))+DY(3)*Y(4)/Y(3)+(Y(3)/(Y(4)*h*ROVUX))*Y(4)*Y(4)*B1*RAS/(Y(3)*S*(AL-Y(1))))

          RETURN

 END


 SUBROUTINE RKYT(Y,H,X,DY)

 DIMENSION Y(4),DY(4),AA(4),S(4),D(4)

 AA(1)=Y(1)

 AA(2)=Y(2)

 AA(3)=Y(3)

 AA(4)=Y(4)

 

 CALL FN(Y,X,DY)

 DO 3 I=1,4

 S(I)=H*DY(I)

 D(I)=S(I)

3 Y(I)=AA(I)+S(I)/2.

 X=X+H/2.

 CALL FN(Y,X,DY)

 DO 4 I=1,4

 S(I)=H*DY(I)

 D(I)=D(I)+2.*S(I)

4 Y(I)=AA(I)+S(I)/2.

 CALL FN(Y,X,DY)

 DO 5 I=1,4

 S(I)=H*DY(I)

 D(I)=D(I)+2.*S(I)

5 Y(I)=AA(I)+S(I)

 X=X+H/2.

 CALL FN(Y,X,DY)

 DO 6 I=1,4

 Y(I)=AA(I)+(D(I)+H*DY(I))/6.

6 AA(I)=Y(I)

 RETURN

 END


 SUBROUTINE LINAP(N,U,X,Y,ZN)

 DIMENSION X(N),Y(N)

 I=N-1

 IF(U.GE.X(N)) GO TO 20

 I=1

 IF(U.LE.X(1)) GO TO 20

 J=N+1

10 K=(I+J)/2

 IF(U.LT.X(K)) J=K

 IF(U.GE.X(K)) I=K

 IF(J.GT.I+1) GO TO 10

20 CONTINUE

 UU=ABS(U)

          ZNAKU=SIGN(1.0,U)

 DX=UU-X(I)

 ZN=Y(I)+DX*(Y(I+1)-Y(I))/(X(I+1)-X(I))

 ZN=SIGN(ZN,ZNAKU)

 RETURN

 END


         REAL FUNCTION AI(t)

 REAL w,t,AMax

          common /comA/ w,AMax

          COMMON P0,P,S,S1

         AI=AMax*sin(w*t+S1)

 END



         REAL FUNCTION AD(t)

 COMMON P0,P,S,S1,V,AM,AL,U,SS,ALX

 REAL t

                                      if(t>ALX)then

                                      AD=0.4*SQRT(SQRT((t-ALX)/ALX))

                                      else

                                      AD=0.0

                                      endif

         END


Исходные данные: &data

 S=0.043

 S1=0.5

 P0=7.E05

 AM=100.

 AL=0.21

 AMax=12000.

 ALX=.100

 ALK=0.199

 Y=0.0,0.0,7.E05,293.0

 XOD=.00,.02,.04,.06,.08,.10,.12,.14,.16,.20

 SILA=90000.,90000.,90000.,90000.,90000.,90000.,90000.,70000.,30000.,10000.

 XD=.00,.02,.04,.06,.08,.10,.11,.14,.16,.20

 SSLA=.0000,.0000,.0000,0.00E-00,0.00E-00,2.12E-03,2.12E-03,4.4E-03,4.4E-03,4.4E-03

/

 &data2

TEMP=300.,500.,1000.,1700.,2300.,3000.,4000.,6000.,8000.,10000.,12000.,14000.,16000.,18000.,20000.,22000.,26000.,30000.,35000.,40000.

CP=138.1,175.5,245.6,335.6,662.0,978.0,1418.0,1965.0,2227.0,2387.0,2575.,2797.,3006.,3304.,3714.,4180.,5030.,5650.,6110.,6910.

TEMP2=300.,500.,1000.,1700.,2300.,3000.,4000.,6000.,8000.,10000.,12000.,14000.,16000.,18000.,20000.,22000.,26000.,30000.,35000.,40000.

RO=93.76,56.16,28.48,15.26,4.21,1.972,1.068,0.679,0.508,0.401,0.325,0.267,0.220,0.179,0.142,0.113,0.082,0.066,0.053,0.04

TEMP3=300.,500.,1000.,1700.,2300.,3000.,4000.,6000.,8000.,10000.,12000.,14000.,16000.,18000.,20000.,22000.,26000.,30000.,35000.,40000.

zh=1.,1.,1.,1.098,2.94,4.814,6.665,6.989,7.015,7.096,7.306,7.634,8.086,8.866,10.065,11.42,13.31,14.26,15.3,17.4

/


Рис. П1.1. Результаты численного расчета пневмомеханических характеристик (12kA): 1 - ход контактов, 2 - изменение скорости, 3 - изменение давления, 4 – температура, 5 – активное сечение сопел

Рис.П1.2. Распределения газодинамических функций (12kA): 1 – Rг(Т), 2 – Кг(Т)


Рис.П1.3. Результаты численного расчета пневмомеханических характеристик (63kA): 1 - ход контактов, 2 - изменение скорости, 3 - изменение давления, 4 – температура, 5 – активное сечение сопел


Рис.1.4. Распределения газодинамических функций (100kA): 1 – Rг(Т), 2 – Кг(Т)


Приложение 2. Свойства элегаза


Наиболее распространёнными изоляционными, дугогасительными и охлаждающими средами, которые применяются в электротехническом оборудовании, является минеральное масло и воздух. Газы по сравнению с маслом и твёрдыми изоляционными материалами имеют определённые преимущества, главные из которых - ничтожнейшая проводимость и практическое отсутствие диэлектрических потерь, независимость в однородном поле электрической прочности от частоты, неповреждённость газовой изоляции заметным остаточным изменениям и малая загрязнённость под действием дуги и короны.

Электрическая прочность газовой изоляции в однородных или слабо неоднородных полях увеличивается с ростом давления и при определённых условиях может превысить электрическую прочность трансформаторного масла, фарфора и высокого вакуума.

Для упрощения конструкций оборудования с газовой изоляцией желательно, чтобы необходимая электрическая прочность была обеспечена при сравнительно небольшом избыточном давлении. Однако при применении газа в электротехническом оборудовании, помимо изоляционных, необходимо учитывать и другие свойства газов, а именно: сам газ и продукты его разложения не должны быть токсичными; газ должен быть химически нейтрален по отношению к применённым в устройстве материалам; газ должен иметь низкую температуру сжижения, чтобы его можно было использовать при повышенных давлениях и требуемых по условиям эксплуатации температурах; газ должен обладать хорошей теплоотводящей способностью; диссоциация газа должна быть незначительной; газ должен быть пожаро- и взрывобезопасным; газ должен быть легкодоступным и недорогим.

При использовании газа в коммутационных аппаратах необходимо, кроме того, чтобы газ обладал хорошей дугогасительной способностью. С точки зрения доступности воздух имеет неоспоримое преимущество по сравнению со всеми другими газами, однако по совокупности требований он не всегда приемлем. Некоторые газы и пары обладают значительно более высокой электрической прочностью, чем воздух. Однако лишь некоторые из них удовлетворяют требованиям, предъявляемым к электрической изоляции. Так, многие вещества в обычных условиях находятся в жидком состоянии, как, например, , имеющее в газообразном состоянии электрическую прочность, в 6,3 раза большую, чем воздух. Многим веществам, кроме того, свойственно более или менее интенсивное разложение в условиях электрического разряда. Наконец, некоторые вещества при разложении выделяют свободный углерод, который, оседая на поверхности твёрдых изоляционных элементов конструкции, делает их проводящими.

Единственным газом, наиболее полно удовлетворяющим поставленным требованиям, является элегаз. Чистый газообразный элегаз совершенно безвреден, химически не активен, поэтому в обычных эксплуатационных условиях он не действует ни на какие материалы, применяемые в аппаратостроении, обладает повышенной теплоотводящей способностью и является очень хорошей дугогасительной средой, позволяющей производить отключение очень больших токов при больших скоростях восстановления напряжения.

Низкие температуры сжижения и сублимации дают возможность при обычных условиях эксплуатировать элегазовые аппараты без специального подогрева. Элегаз не горит и не поддерживает горения, следовательно, элегазовые аппараты являются взрыво- и пожаробезопасными.

Элегаз — нетоксичное, стойкое, химически инертное, негорючее соединение, не имеющее цвета, запаха и вкуса. При нормальных условиях (20 °С и 1 бар) - это тяжелый газ.

Однако с понижением температуры и повышением давления он сжижается. Границей между газообразной и жидкой фазами является кривая конденсации, на которой происходит резкий скачок плотности элегаза (рис. П2.1.). При температуре t=45,56 °C и давлении р=37,7 бар (критическая


Рис. П2.1. — Фазовая диаграмма состояния элегаза (давление абсолютное).


Кривые равновесия фаз:

ОК - жидкость - пар (газ), линия парообразования (конденсации); ОА -твердое тело — пар, линия сублимации; ОВ - твердое тело - жидкость, линия плавления.

Характерные точки диаграммы:

К - критическая точка: = 45,56 °С; p = 37,7 бар (3,77 МПа); плотность p = 722,5 кг/м3.

O - тройная точка:  = - 50,8 °С, p = 2,25 бар (0,225 МПа).

точка) граница между газом и жидкостью стирается и элегаз находится в парообразном состоянии. При снижении температуры до минус 50,8 °С и давлении 2,25 бар элегаз может находиться в трех агрегатных состояниях - газ, жидкость, лед. Эта точка называется тройной. При температуре ниже минус 50,8 °С элегаз из газообразного состояния переходит в твердое, минуя жидкую фазу, и наоборот (кривая АО). При нормальном давлении возгонка элегаза из твердого в газообразное состояние происходит при температуре минус 62,8 °С. Пунктиром ОВ обозначена предполагаемая граница между твердой и жидкой фазами.

Диаграмма состояния элегаза исследовалась многими авторами и фирмами в основном экспериментальными методами. Расхождения между данными различных источников достаточно велики и увеличиваются при низких температурах, особенно вблизи кривой конденсации, что связано с точностью проведения эксперимента и степенью очистки элегаза от примесей.

Элегаз - это очень стойкий и инертный газ, который при нормальных условиях не вступает в реакцию ни с одним веществом, с которым контактирует, не растворяется в воде. Это тяжелый газ, его молекулярный вес - 146,0 г/моль (21,95 % серы и 78,05 % фтора).

Структура молекулы восьмигранная с шестью атомами фтора в вершинах, связи в молекуле - ковалентные, диаметр молекулы - 4,77, температура начала интенсивного разложения — 500°С, потенциал ионизации I - 19,3 эв, энергия сродства молекулы к электрону (-1,49±0,22) эв.

Электроотрицательность молекул равна сумме потенциала ионизации и сродства к электрону.

Сродство к электрону у молекулы SF6 имеет положительный знак, благодаря чему свободный электрон, попавший в поле молекулы элегаза, захватывается ею и образуется устойчивый отрицательный ион.

Благодаря положительному сродству молекулы SF6 к электрону и устойчивости получившегося отрицательного иона объясняется высокая электрическая прочность элегаза по сравнению с другими газами, например азотом или воздухом. На рисунке П2.2 приведены зависимости пробивного напряжения для трансформаторного масла, элегаза и воздуха.



Рис. П2.2. – Пробивное напряжение трансформаторного масла, воздуха и  в зависимости от давления


Как видно, электрическая прочность элегаза при давлении 3 бара (кг/см ) примерно в 2,5 раза выше, чем для воздуха, и равняется электрической прочности трансформаторного масла. Поэтому габариты элегазового оборудования более чем на порядок ниже габаритов воздушного оборудования такого же класса напряжения. Это позволяет создать закрытые подстанции, снабженные комплектными распределительными устройствами с элегазовой изоляцией (КРУЭ), которые занимают на порядок меньшую площадь, чем открытые подстанции с воздушными выключателями. Также подстанции являются незаменимы для больших густонаселенных городов и оборонных объектов.

Под воздействием электрических разрядов происходит разложение элегаза с образованием свободного фтора, газообразных и твёрдых фторидов, многие из которых весьма токсичны.

Одним из необходимых условий возможности использования того или иного соединения в электрических аппаратах является его химическая инертность. Оно не должно вступать в реакцию ни с каким материалом, применяемым в электроаппаратостроении. Чистый элегаз при обычных условиях удовлетворяет этому требованию, несмотря на то, что в состав его молекулы входит фтор, являющийся одним из наиболее активных химических элементов. По химической инертности чистый элегаз при нормальных условиях сравним с азотом или даже инертными газами. Строение молекулы и её энергетическое состояние определяют высокую стабильность элегаза.

Хотя теплопроводность и теплоемкость элегаза ниже, чем у воздуха, однако общие теплопередающие свойства в несколько раз выше благодаря более высокой плотности.

Объемный критический расход для элегаза в 2,3 раза меньше, чем для воздуха, благодаря этому в значительной степени стало возможным создание мощных автопневматических элегазовых выключателей.

Таким образом, высокая электрическая прочность, имеющая значительно меньший разброс пробивного напряжения (вместо 12), повышенная теплоотводящая способность, химическая инертность, электроотрицательность, высокий массовый расход и относительно низкий объемный расход — это те преимущества по сравнению с воздухом, которые позволяют создать автокомпрессионные дугогасительные устройства большей мощности при значительно меньших размерах дугогасительной камеры, чем у воздушных выключателей.

В соответствии с международными нормами состав элегаза для использования в высоковольтном оборудовании должен быть не хуже приводимых ниже норм, а именно:

SF6                                                   >99,9 % по массе;

O2 ; N2; воздух                        >500 ррм по массе;

СF4                                                  >500 ррм по массе;

вода                                                 >15 ррм по массе

минеральные масла                        >10 ррм по массе

кислотность в пересчёте на HF      >0,3 ррм по массе;

гидролизуемые фториды

в пересчёте на HF                           >0,3 ррм по массе;

Технические условия на отечественный элегаз повышенной чистоты ТУ-6-02-1249-83 практически соответствуют указанным нормам. Изготовленный по этим ТУ элегаз называется товарным и может быть использован как показали разработки НИИВА в любом элегазовом высоковольтном оборудовании вплоть до 1150 кВ на переменном токе и до 1500 кВ на постоянном токе. Его производителями являются Пермский химический комбинат и Кирово-Чепецкий химкомбинат (Россия).

Стоимость элегаза сравнительно не высока. В производстве элегаза на заводе “Галоген” (завод Пермь) стоимость его составляет 122 руб./кг.


Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.