Меню
Поиск



рефераты скачать Электроснабжение агломерационной фабрики металлургического комбината

 
 



Вариант 1                                                                     Вариант 2


Рис.4 Схема устройства УВН.


2. Вариант.

Схема отделитель-короткозамыкатель.

1. Отделитель ОД-110Б/1000У1 к1=180 руб.

2. Короткозамыкатель КЗ-110УХЛ1 к2 = 200 руб.

3. Контрольный кабель АКВВБ 4х2,5

к’3=0,82 тыс. руб. /км;

к3 = 820×30 = 246 руб.

Капиталовложения:


К2=к1+к2+к3=180+200+24600=24980 руб.

Издержки: И2 = Еа×К2 = 0,063×24980 = 1573,74 руб. /год.


При рассмотрении вариантов электроснабжения необходимо произвести оценку надежности данных вариантов.

Оценка надежности производится на основании статистических данных о повреждаемости элементов электроснабжения, ожидаемого числа отключений для планового ремонта и времени, необходимого для восстановления после аварий и для проведения планового ремонта.

Оценку надежности проведем при последовательном включении элементов электроснабжения.

Оценка надежности производится на основании параметров, приведенных в таблице 8.


Таблица 8

Варианты


Наименования

оборудования

w,

1/год

Тв×10,лет

Кп,

о. е.

1

Выключатель

0,06

2,3

6,3


Разъединитель

0,008

1,7

1,1

2

Короткозамыкатель

0,02

1,7

1,1


Отделитель

0,03

1,7

1,1


Контрольный кабель

0,13

90,2

7,38


Параметр потока отказов одного присоединения:

1. Вариант.


 = 0,06+0,008 = 0,068.


2. Вариант.


 = 0,02+0,03+0,13 = 0,18.


Среднее время восстановления после отказа присоединений:


, час.


1. Вариант.


 час.


2. Вариант.


 час.


Коэффициент аварийного простоя присоединения:


Ка = wа×Тв.


1. Вариант.


Ка1= 0,068·19,529 = 1,328 о. е.


2. Вариант.


Ка2=0,18·5740802 = 103,464 о. е.


Количество недоотпущенной электроэнергии вследствие отказа схемы присоединения:


DW=Руст×Ка, кВт×ч/год.


1. Вариант.


DW1=32980×1,328=43797,44 кВт×ч/год.


2. Вариант.


DW2=32980×103,464=3412232,72 кВт×ч/год.


Ущерб:

1. Вариант.


У1=У’×DW1=1,3×43797,44=56936,672 руб. /год.


2. Вариант.


У2=У’×DW2=1,3×3412232,72=4435915,536 руб. /год.


Полные затраты по вариантам:


З1=Ен×К1+И1+У1=0,125×9200+579,6+56936,672=58666,272руб. /год.

З2=Ен×К2+И2+У2=0,125·24980+1573,7+4435915,54=4440611,74руб. /год.


Приведенный технико-экономический расчет показал, что наиболее экономичный вариант: З1=58666,272 руб. /год.


Напряженность электромагнитного поля по магнитной составляющей на расстоянии 50 см от

поверхности видеомонитора

0,3 А/м

Напряженность электростатического поля не должна превышать:


 - для взрослых пользователей

20 кВ/м

 - для детей дошкольных учреждений и учащихся средних специальных и высших учебных заведений

15 кВ/м

Напряженность электромагнитного поля на расстоянии 50 см вокруг ВДТ по электрической

составляющей должна быть не более:


 - в диапазоне частот 5 Гц - 2 кГц;

25 В/м

 - в диапазоне частот 2 - 400 кГц

2,5 В/м

Поверхностный электростатический потенциал не должен превышать:

500 В


Таким образом, принимаем первый вариант.


6. Разработка системы распределения электроэнергии


В систему распределения завода входят распределительные устройства низшего напряжения ППЭ, комплектные трансформаторные (цеховые) подстанции (КТП), распределительные пункты (РП) напряжением 6 кВ и линии электропередач (кабели, токопроводы), связывающие их с ППЭ.

Выбор системы распределения включает в себя решение следующих вопросов:

1. Выбор рационального напряжения распределения;

2. Выбор типа и числа КТП, РП и мест их расположения;

3. Выбор схемы РУ НН ППЭ;

4. Выбор сечения кабельных линий и способ канализации электроэнергии.


6.1 Выбор рационального напряжения распределения электроэнергии на напряжении свыше 1000 В


Рациональное напряжение определяется на основании ТЭР и для вновь проектируемых предприятий в основном зависит от наличия и значения мощности ЭП напряжением 6 кВ, 10 кВ, наличия собственной ТЭЦ и величины её генераторного напряжения, а также рационального напряжения системы питания. ТЭР не производится в следующих случаях:

-если мощность ЭП напряжением 6 кВ составляет менее 10-15% от суммарной мощности предприятия то рациональное напряжение распределения принимается равным 10 кВ, а ЭП 6 кВ получают питание через понижающие трансформаторы 10/6 кВ.

-если мощность ЭП напряжением 6 кВ составляет более 40% от суммарной мощности предприятия, то рациональное напряжение распределения принимается равным 6 кВ.


44,1 %


Согласно вышесказанному, рациональное напряжение распределения на данном предприятии принимается равным 6кВ.


6.2 Выбор числа, мощности трансформаторов цеховых ТП


Число КТП и мощность трансформаторов на них определяется средней мощностью за смену (Sсм) цеха, удельной плотностью нагрузки и требованиями надежности электроснабжения.

Если нагрузка цеха (Sсм i) на напряжение до 1000 В не превышает 150 - 200 кВА, то в данном цехе ТП не предусматривается, и ЭП цеха запитывается с шин ТП ближайшего цеха кабельными ЛЭП.

Число трансформаторов в цеху определяется по выражению:



где: Scм - сменная нагрузка цеха;

Sном. тр. - номинальная мощность трансформатора, кВА.

β - экономически целесообразный коэффициент загрузки:

для 1-трансформаторной КТП (3 категория) β = 0,95;

для 2-трансформаторной КТП (2 категория) β = 0,80‑0,85;

для 2-трансформаторной КТП (1 категория) β = 0,7‑0,75.

Коэффициент максимума для определения средней нагрузки за смену находится по выражению:


Kmax = Кс. / Ки.


Средняя нагрузка за смену определяется по выражению:


Pсм. = Pцеха / Кmax.


Учитывая, компенсацию реактивной мощности, определяем мощность компенсирующей установки: Qк. у. станд.

Средняя реактивная мощность заводского цеха с учетом компенсации, определяется из выражения:


Q'см = Qсм - Qк. у. станд,


где Qк. у. станд - стандартная мощность компенсирующей установки.

Полная мощность, приходящаяся на КТП с учетом компенсации реактивной мощности:


.


Цеховые трансформаторы выбираются по Sсм с учетом Sуд - удельной плотности нагрузки.

Удельная мощность цеха:


S/уд = S/см /F;


где F - площадь цеха .

Результаты расчетов средних нагрузок за наиболее нагруженную смену остальных цехов сведены в таблицу 9.


таб.9


При определении мощности трансформаторов следует учесть, что если Sуд не превышает 0,2 (кВА/м2), то при любой мощности цеха мощность

трансформаторов не должна быть более 1000 (кВА). Если Sуд находится в пределах 0,2-0,3 (кВА/м2) то единичная мощность трансформаторов принимается равной 1600 (кВА). Если Sуд более 0,3 (кВА/м2) то на ТП устанавливаются трансформаторы 2500 (кВА).

В качестве примера определяется число трансформаторов в цехе 8. Так как удельная плотность нагрузки Sуд=0,01 кВА/м<0,2, то целесообразно установить трансформаторы мощностью до 1000 кВА.



Предварительно выбирается 2 трансформатора мощностью по 160 кВА каждый марки ТМ-160/6. Выбранные трансформаторы проверяются по коэффициенту загрузки в нормальном режиме


;


Коэффициент загрузки в послеаварийном режиме:


;


Расчеты по выбору числа и мощности трансформаторов остальных цехов сведены в таблицу 10.


табл.10


6.3 Выбор марки и сечения КЛЭП


6.3.1 КЛЭП напряжением 10 кВ

Распределение энергии на территории предприятия осуществляем кабельными линиями.

Двух трансформаторные подстанции с потребителями 1 категории запитываются двумя нитями КЛЭП по радиальной схеме. Так же по радиальной схеме запитываются КТП с трансформаторами 2500 кВА.

Двух трансформаторные подстанции с потребителями 2 и 3 категории запитываются двумя нитями КЛЭП по магистральной схеме, а там где это невозможно из-за больших нагрузок - по радиальной схеме.

Для определения расчетной нагрузки кабельных линий необходимо определить потери мощности в трансформаторах КТП (смотри таб.11).


;


Где: ΔРхх - потери холостого хода трансформатора, кВт.

ΔРкз - потери короткого замыкания в трансформаторах, кВт.

n - число трансформаторов.


;


Где: Iхх - ток холостого хода трансформатора, %.

Uк - напряжение короткого замыкания трансформатора, %.

Затем с учетом потерь мощности в трансформаторах находится расчетная мощность, по которой выбирается сечение кабелей


;


Находится ток в нормальном режиме:



где: n - число кабелей, работающих в нормальном режиме;

Sр - мощность, передаваемая кабелем.

Находится ток в послеаварийном режиме:


.


По таблице1.3.18 [1] выбирается ближайшее стандартное сечение. Предварительно принимается кабель трехжильный с алюминиевыми жилами для прокладки в земле, марки СШв. Выбор сечения КЛЭП производится в соответствии с требованиями ПУЭ с учетом нормальных и после аварийных режимов работы электрической сети. При проверке сечения кабеля по условиям после аварийного режима для кабелей напряжением до 10 кВ необходимо учитывать допускаемую в течение пяти суток, на время ликвидации аварии, перегрузку в зависимости от вида изоляции (при дипломном проектировании можно принять для кабелей с бумажной изоляцией перегрузку до 25% номинальной).

Поэтому допустимая токовая нагрузка кабеля при прокладке в земле в послеаварийном режиме:


Iдоп. пар=1.25. Iдоп.


Допустимая токовая нагрузка кабеля при прокладке в земле в нормальном режиме:


Iдоп. н. р. =Iтабл.


В качестве примера выбирается сечение кабельной линии ГПП-ТП цех.5.



Находится ток в нормальном режиме:


.


Находится ток в послеаварийном режиме:


.


По таблице 1.3.18 [1] выбирается ближайшее стандартное сечение. Предварительно принимается кабель трехжильный с алюминиевыми жилами для прокладки в земле марки СШв сечением F = 70мм2, Iдоп. = 245А.

Допустимая токовая нагрузка кабеля при прокладке в воздухе в нормальном режиме:


.


В послеаварийном режиме:


.


Результаты расчета сведены в таблицу 12,13.

Схема подключения кабелей показана на рисунке 6 и 7.


табл.11


табл.12



табл.13



Рис.6 Трассы КЛЭП 6 кВ.



Рис.7 Трассы КЛЭП 0,4 кВ.


7. Расчёт токов короткого замыкания


Коротким замыканием (К. З.) называется всякое случайное или преднамеренное, не предусмотренное нормальным режимом работы, электрическое соединение различных точек электроустановки между собой и землей, при котором токи в аппаратах и проводниках, примыкающих к месту присоединения резко возрастают, превышая, как правило, расчетные значения нормального режима.

Основной причиной нарушения нормального режима работы систем электроснабжения является возникновения К.З. в сети или в элементах электрооборудования. Расчетным видом К.З. для выбора или проверки параметров электрооборудования обычно считают трехфазное К. З.

Расчет токов К.З. с учетом действительных характеристик и действительных режимов работы всех элементов электроснабжения сложен.

Поэтому вводятся допущения, которые не дают существенных погрешностей: Не учитывается сдвиг по фазе ЭДС различных источников;

Трехфазная сеть принимается симметричной;

Не учитываются токи нагрузки;

Не учитываются емкостные токи в ВЛЭП и в КЛЭП;

Не учитывается насыщение магнитных систем;

Не учитываются токи намагничивания трансформаторов.


7.1 Расчет токов короткого замыкания в установках напряжением выше 1000В


Расчет токов короткого замыкания в установках напряжением выше 1000 В имеет ряд особенностей:

Активные элементы систем электроснабжения не учитывают, если выполняется условие r< (x/3), где r и x-суммарные сопротивления элементов СЭС до точки К. З.

При определении тока К.З. учитывают подпитку от двигателей высокого напряжения.

Расчет токов короткого замыкания производится для выбора и проверки электрических аппаратов и токоведущих частей по условиям короткого замыкания, с целью обеспечения системы электроснабжения надежным в работе электрооборудованием.

Для расчета токов К.З. составляем расчетную схему и на её основе схему замещения. Расчет токов К.З. выполняется в относительных единицах.

Принципиальная схема для расчета токов КЗ. и схема замещения представлена на рисунке 8.

Базисные условия: Sб=1000 МВА, Uб1=115 кВ, Uб2=10,5 кВ.

Базисный ток определяем из выражения


кА.

 кА.

Сопротивление системы: Хс=

 

Точка К-1

Сопротивление воздушной линии, приведенное к базисным условиям


;


Х0-удельное реактивное сопротивление провода, Ом/км.

l-длина линии, км; Uб - среднее напряжение;

Сопротивления системы до точки К-1


ХК1=Хс+ХВЛ=0,1255+0,143=0,2685;


Начальное значение периодической составляющей тока в точке К-1:


 кА.


Принимаем значение ударного коэффициента kуд=1,8, тогда значение ударного тока


 кА.


Где Куд - ударный коэффициент тока К. З.2.45 [2] по таблице, кА.

I”по (к-1) - начальное действующее значение периодической составляющей, кА.

Мощность короткого замыкания:


МВА.

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.