Меню
Поиск



рефераты скачать Электромагнитные волны в волноводном тракте


Рисунок 2.2 Радиальная линия (а) и распределение в ней амплитуд напряжения и тока (б)


Условие резонанса (для начала радиальной линии, r=r0)


jC0Z0/(5,31l) + Y(r0,R) (2.6)


Первый член выражения (2.6) является нормированной по Z0 проводимостью емкостного зазора, второй член — нормированной входной проводимостью радиальной линии, короткозамкнутой на радиусе r = R. Расчет такой PC производится по уравнению (2.6), при этом обычно задают значения С0, λ, r0, h. Если емкость С0 не задана, ее определяют как емкость соответствующего конденсатора: С0=ε0εrπr02/d, где ε0 — электрическая постоянная вакуума, εr— относительная диэлектрическая проницаемость материала, заполняющего зазор.

Если заполнение зазора — воздух или вакуум (εr= 1),


C0=0,28r02/d (2.7)


С0 получаем в пФ. Иногда соотношение (2.7) уточняют, добавляя к чисто «торцевой» емкости емкость боковой поверхности центральной части PC, ограничивающей радиальную линию в ее начале, на длину верхней крышки PC. В этом случае


C0=0,28r0(r0/d+ 1,25 ln h/d) (2.8


2.4 Отрезок линии в качестве резонаторов


Наиболее просты по устройству и часто применяются коаксиальные четвертьволновые и полуволновые резонаторы.

Четвертьволновый резонатор представляет собой отрезок коаксиальной линии, один конец которого замкнут накоротко, а второй разомкнут. В общем случае длина резонатора кратна нечетному числу четвертей волн. Так как разомкнутый конец резонатора всегда имеет некоторую емкость рассеяния, которую можно рассматривать как сосредоточенную, то длина резонатора несколько меньше четверти длины волны.

Если к открытому концу коаксиального резонатора подключить емкость, то длина резонатора будет меньше четверти длины волны. Емкость можно расположить и внутри резонатора.

Полуволновой резонатор представляет собой отрезок коаксиальной линии, замкнутый накоротко с обоих концов. Длина такого резонатора может быть выбрана равной полуволне или кратной целому числу полуволн. Полуволновой резонатор можно рассматривать как четвертьволновый, соединенный со своим зеркальным изображением. Полуволновой отрезок коаксиальной линии с разомкнутыми концами также обладает резонансными свойствами.

Перестройка четвертьволновых резонаторов производится либо путем изменения длины центрального проводника, либо путем изменения величины сосредоточенной концевой емкостей.

Полуволновые короткозамкнутые резонаторы перестраиваются изменением их длины с помощью поршней, а разомкнутые — либо изменением величины сосредоточенной емкости, либо изменением длины центрального проводника.

Связь резонатора с подводящими линиями может быть нескольких видов: индуктивная, емкостная, комбинированная (индуктивно-емкостная) и кондуктивная.


2.5 Прямоугольные объёмные резонаторы


Резонатор образуют, закорачивая с двух сторон отрезок прямоугольного волновода с внутренними размерами поперечного сечения а×b см2. Настройке в резонанс соответствует случай, когда вдоль длины резонатора l укладывается целое число полуволн. Он может возбуждаться в зависимости от характера и места включения элемента связи либо на волне типа Нmnp, либо на волне типа Еmnp. Индексы m, n, p= 0,1,2,… соответствуют числу полуволн одной из компонент СВЧ электромагнитного поля, укладывающихся в резонаторе вдоль широкой стенки волновода a, узкой b и длины резонатора l соответственно.

Резонансная длина волны (в собственном пространстве)

λ=2/ (2.9)


При работе на волнах Е-типа возможно возбуждение колебаний с р=0. Основным видом колебаний в прямоугольном объемном резонаторе является колебание типа Н101. При этом собственная добротность резонатора


Q0= λRσb(a2+b2)3/2 / [2l(a+2b)+2a3(l+2b)] (2.10)


2.6 Длинная линия


Длинными линиями, или фидерами, в радиотехнике называют такие двухпроводные линии, длина которых l больше или соизмерима с длиной волны λ, а расстояние между проводами d меньше длины волны λ, т. е. l>>λ, d<<λ

Они служат в основном для передачи энергии от передатчика к антенне и от антенны приемнику. Их применяют так же как измерительные линии и линии задержки, а на сверхвысоких частотах их отрезки могут заменять колебательные контуры.Физический смысл приведенных неравенств состоит в том, что при распространении высокочастотной электромагнитной волны вдоль линии условия квазистационарности не выполняются, так как l>>λ.

С другой стороны, если и расстояние между проводами d больше длины волны d>>λ, то волна от источника электромагнитных колебаний будет распространяться не по проводам, а во всех направлениях, т. е. будет происходить излучение.

Например, если между проводами двухпроводной линии поместить источник света, то ясно, что свет будет распространяться не по проводам, а излучаться во всех направлениях. Условие l>>λ означает, что вдоль линии укладывается большое число длин волн, и она не является системой с сосредоточенными параметрами, поэтому двухпроводная линия представляет собой систему с распределенными параметрами. Для ее описания вводят распределенную емкость, индуктивность и сопротивление на единицу длины, размерность которых Ф/м, Гн/м, Ом/м. Основное требование, предъявляемое к длинным линиям,— передача энергии электромагнитной волны с минимальным затуханием. Поэтому в первую очередь необходимо добиваться минимальных потерь, которые зависят от длины линии и частоты колебаний волноводного процесса. При длинах волн короче 10 см потери в двухпроводной линии резко возрастают, и они становятся неэффективными для передачи энергии. Поэтому их заменяют волноводами — полыми металлическими трубами, которые имеют меньшие потери, чем двухпроводная линия.

Процессы, происходящие в длинных линиях, принципиально отчаются от процессов в цепях с сосредоточенными параметрами. Эта объясняется тем, что индуктивности, емкости и активные сопротивления длинных линий распределены по всей длине линии, т. е. длинные линии являются цепями с распределенными параметрами. Процесс распространения электромагнитной энергии вдоль длинной линии является волновым процессом. Этот вывод следует из применения уравнений Максвелла к длинным линиям. Другой метод изучения процессов в длинных линиях основан на эквивалентной электрической схеме двухпроводной длинной линии, согласно которой линия разбивается на бесконечно большое число элементарных участков с бесконечно малыми сосредоточенными параметрами.

Рассмотрим бесконечно малый отрезок такой линии dX . Если в начале элементарного участка приложено напряжение U, то при протекании тока в указанном направлении приращение напряжения на участке равно


 (2.11)


так как приращение возможно только за счет ЭДС самоиндукции. Аналогично, если ток в начале участка равен I,то в конце его он получит приращение


 (2.12)


так как часть тока ответвляется через емкость dC=Cdx. В уравнениях (2.11), (2.12) L и С — индуктивность и емкость на единицу длины. Разделив на dx, получим


 (2.13)


Это телеграфные уравнения идеальной линии. Продифференцировав первое из уравнений по х, а второе по t, получим


 (2.14)


Волновые уравнения для напряжения получим после подстановки (2.14) в (2.13):


 (2.15)


Уравнения можно записать так:


 (2.16)

где  — скорость распространения волны


 (2.17)


Решением волнового уравнения является любая функция вида



Полное решение волновых уравнений имеет вида


 (2.19)

 (2.20)


Таким образом, ток и напряжение в линии можно представить в виде суммы прямой и обратной волн, распространяющихся вдоль линии со скоростью  .

Если к началу бесконечной линии приложить напряжение U(t), то, применив к (2.19) и (2.20) граничные условия х = 0 и U2=0, получим U(t)=U1(t), а решение будет иметь вид


 (2.21)

 (2.22)


Подставив его в уравнение (2.15), получим


, (2.23)


откуда


 (2.24)


Далее



Функции U и I связаны следующими соотношениями:


 (2.25)


где Z0 волновое сопротивление линии. Из этих же уравнений


следует, что  т. е. .Это определение волнового сопротивления Zo для отраженной волны, и поэтому из (2.25) получим


 (2.26)


Рассмотрим линию, нагруженную на активное сопротивление Rн. Так как напряжение на нагрузке равно сумме напряжений прямой и обратной волн, то граничные условия на ее конце будут следующими:



Введем понятие коэффициента отражения, как отношения амплитуды обратной волны к амплитуде падающей:


 (2.27)


Если ,то

Если линия разомкнута на конце (), то коэффициент отражения


 (2.28)


т. е. волна напряжения отражается полностью с тем же знаком. Если линия замкнута на конце (Zн = 0), коэффициент отражения Котр= -1.

От закороченного конца линии волна напряжения полностью отражается с противоположным знаком. В результате напряжение на конце линии равно нулю, а ток удваивается.

Обычно измеряют максимум и минимум напряжения и определяют коэффициент бегущей волны


 (2.29)


Полагая Zн=R=ρ (согласованная нагрузка), получаем

U(x) = Uн |cosαx+ i sinαx)=Uнexp(iαx),

I (х)=Iн [cos αx + i sin αx] = Iн exp(iαx),

Z(х)=Zн = ρ

При работе на согласованную нагрузку в линии существуют только падающие (бегущие) волны тока и напряжения. Так как затуханием ρ мы пренебрегли, то модули амплитуд U(х) и I (х) вдоль линии не изменяются и равны соответственно модулям Uн и Iн

Переходя к мгновенным значениям, получаем


u(t, x) = Uн cos(ωt+αx),

i(t, х) = Iн cos(ωt+αх),

В начале линии при х = 1 будем иметь u(t,l)= Uн cos(ωt+αl), i(t,l)= Iн cos(ωt+αl), а в конце линииu (t, 0)=Uн cosωt, i(t,0) = Iн cosωt. Таким образом, фаза бегущей волны в конце линии отстает на угол φн=αl=2πl/λ=ωi/c от фазы волны в начале линии (для воздушной линии, когда v=c), где t1-время пробега волной отрезка l.

Полагая Zн = ixн (чисто активная нагрузка), получаем


U(х) = Uн [ cos αх+ρ/xн sinαх] (2.30)

I(х) = Iн [ cos αх- xн /ρ sinαх]


Переходя к модулям амплитуд, будем иметь


 (2.31)


Из этих выражений видно, что при чисто реактивной нагрузке в линии устанавливаются так называемые стоячие волны напряжения и тока. В точках, отстоящих от конца на расстояниях которых αx-φ1 = 0,π,2π ...., |соs(αх-φ1)| обращается в единицу, |sin(αx -φ1)| - в нуль, амплитуда напряжения , достигает своего максимума, а амплитуда тока равна нулю. Эти точки соответствуют пучностям напряжения и узлам тока. В точках где αx-φ1=π/2,3π/2,5π/2... и так далее, наоборот, устанавливаются узлы напряжения и пучности тока.

Заметим, что входное сопротивление линии при стоячих волнах имеет характер чисто реактивного сопротивления.


 (2.32)


Из этого следует, что в любом сечении линии напряжение и ток сдвинуты по фазе на угол 90 градусов. Из (2.32) видно, что в пучностях соответственно напряжения и тока амплитуды равны


 (2.33)

 (2.34)


Если умножить обе части последнего выражения на ρ, то получим


(2.35)


При стоячих волнах максимальные амплитуды напряжения и тока связаны простым соотношением


Uмакс=Iмаксρ (2.36)


Интересно также установить связь между амплитудой в пучности и амплитудой падающей волны. Можно написать следующее выражение для напряжения на конце линии:


Uн = Uпад + Uотр = Uпад(1 + Г) (2.37)


С учетом Г находим окончательно Uмакс= 2Uпад.Аналогично можно показать, что Ιмакс= = 2Ιпад . Итак, при чисто реактивной нагрузке амплитуды в пучностях равны удвоенному значению амплитуды падающей волны. Физический смысл этого результата становится очевидным, если учесть, что образование стоячей волны является результатом интерференции падающей и отраженной волн.

Так как модуль коэффициента отражения при чисто реактивной нагрузке равен единице, то амплитуды отраженной и падающей волн одинаковы. При распространении вдоль линии во взаимно противоположных направлениях эти волны удваиваются по амплитуде в точках, где их фазы совпадают (пучности), и взаимно уничтожаются в точках, где сдвиг фазы равен 180° (узлы). Из предыдущего ясно, что режим чисто стоячей волны возможен лишь в линии без потерь.

Рассмотрим еще вопрос о распределении энергии электромагнитного поля вдоль линии со стоячей волной. Для этого выделим с помощью двух параллельных плоскостей, перпендикулярных к оси линии, пространство, связанное с элементом линии длиной Δx, и составим выражение для энергии магнитного и электрического поля в указанном пространстве. Если амплитуда тока в рассматриваемом элементе линии I(х),а напряжение U(x), то, очевидно, мгновенное значение энергии магнитного поля будет

 (2.38)


а мгновенное значение энергии электрического поля


 (2.39)


При составлении этих выражений учтено, что при стоячей волне напряжение и ток сдвинуты по фазе на 90°. Начальная фаза θ может иметь произвольную величину и для рассматриваемого здесь вопроса значения не имеет.

Суммируя полученные энергии, находим



Таким образом, приходим к выводу, что при чисто стоячей волне средняя энергия электромагнитного поля (на единицу длины) не изменяется вдоль линии. Имеет место лишь перераспределение энергии между магнитным и электрическим полем. В пучностях напряжения вся энергия запасена в электрическом поле (магнитное поле отсутствует), а в пучностях тока — в магнитном поле (электрическое поле отсутствует).


2.7 Типы волноводных систем


Линии передачи миллиметрового (ММ) и субмиллиметрового (СБМ) волн являются и объектом и средством измерений. В первом случае необходимо знать электродинамические характеристики линий, передающих сигнал на ММ и СБМ волнах. Во втором случае линии передачи используются для измерения характеристик вносимых в них объектов (например, диэлектрических образцов).

В ММ и СБМ диапазонах волн применяются следующие типы волноводных систем: полые металлические волноводы; металлодиэлектрические волноводы; диэлектрические, в том числе диэлектрические полосковые волноводы; квазиоптические лучеводы; микрополосковые линии. Основным отличием полых металлических волноводов ММ и СБМ волн от волноводов, применяемых в СВЧ диапазоне, является то, что они, как правило, являются многомодовыми. Это обстоятельство значительно затрудняет как разработку и создание самих линий передач, так и измерение основных их характеристик. Такими характеристиками являются: постоянные распространения γj=βj-ιαj (βj и αj — фазовая постоянная и постоянная затухания волны j-го типа соответственно); относительный уровень мощности j-й волны; частотная и фазовая характеристики линии; Kст; предельная мощность и др.

Точность измерения этих характеристик определяется в первую очередь требованиями, предъявляемыми к конкретному тракту: в одном случае главным является обеспечение минимальных потерь, в других— заданной структуры поля, максимума передаваемой мощности:, равномерности фазовой характеристики и т. д.

Рассмотрим основные свойства многомодовых волноводов. Распределение электрического и магнитного полей волны в любом поперечном сечении волновода при z = const неизменно, а происходит лишь изменение амплитуды и фазы волны по закону Ej(x,y,z)=AjEj(x,y)e-iγjz, где Aj- амплитуда волны j-го типа. Расчет значения αj практически всегда приводит к несоответствию с измеряемой величиной затухания [17]. Поэтому даже в регулярном волноводе ММ и СБМ диапазона практически всегда необходимы измерения потерь αj, а иногда величин βj, Ej или Нj. [17]

Реальные тракты всегда имеют ряд специально вводимых или случайных нерегулярностей. Первые связаны с использованием измерительных элементов, таких как аттенюаторы, фазовращатели, модуляторы, переходы с одного сечения волновода на другое, делители мощности, детекторные секции и т. д.

Случайные нерегулярности возникают из-за неидеальности геометрии волноводов, а также их соединения и крепления. Следует отметить, что с укорочением длины волны случайные нерегулярности вносят все больший вклад как в значение вносимых потерь, так и в эффективность преобразования основной моды в высшие [17].

Страницы: 1, 2, 3, 4, 5




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.