Меню
Поиск



рефераты скачать Вступительные билеты и ответы по физике для поступающих на заочное отделение в Саратовский государст...

Сила тока - физическая величина, определяющая величину электрического заряда, перемещаемого в единицу времени через поперечное сечение повода                     

 Если сила тока со временем не меняется, то ток называют постоянным.

Сила тока, подобно заряду,— величина скалярная. Она может быть как положительной, так и отрицательной. Знак силы тока зависит от того, какое из направлений вдоль проводника принять за положительное. Cила тока I>0, если направление тока совпадает с условно выбранным, положительным направлением вдоль проводника. В противном случае I<0.

Сила тока зависит от заряда, переносимого каждой частицей, концентрации частиц, скорости их направленного движения и площади поперечного сечения проводника. Измеряется в (А).

Для возникновения и существования постоянного электрического тока в веществе необходимо, во-первых, наличие свободных заряженых частиц. Если положительные и отрицательные заряды связаны друг с другом в атомах или молекулах, то их перемещение не приведет к появлению электрического тока.

Для создания и поддержания упорядоченного движения заряженных частиц необходима, во-вторых, сила, действующая на них в определенном направлении. Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за сопротивления, оказываемого их движению ионами кристаллической решетки металлов или нейтральными молекулами электролитов.

На заряженные частицы, как мы знаем, действует электрическое поле с силой F=qE. Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.

Если внутри проводника имеется электрическое поле, то между концами проводника  существует разность потенциалов. Когда разность потенциалов не меняется во времени, то в проводнике  устанавливается  постоянный электрический ток.

Закон Ома. Наиболее простой вид имеет вольт-амперная характеристика металлических проводников и растворов электролитов. Впервые (для металлов) ее установил немецкий ученый Георг Ом, поэтому зависимость силы тока от напряжения носит название закона Ома.

Закон Ома для участка цепи: сила тока прямо пропорциональна 

напряжению  и обратно пропорциональна сопротивлению:                                                  

Доказать экспериментально  справедливость закона Ома  трудно.

28. Сопротивление проводников. Последовательное и параллельное соединение проводников.

Сопротивление. Основная электрическая характеристика проводника — сопротивление. От этой величины зависит сила тока в проводнике при заданном напряжении. Сопротивление проводника представляет собой как бы меру противодействия проводника установлению в нем электрического тока.

 


С помощью закона Ома можно определить сопротивление проводника:                              ,

для этого нужно измерить напряжение и силу тока.

сечения S Сопротивление зависит от материала проводника и его геометрических размеров. Сопротивление проводника длиной l с постоянной площадью поперечного равно:



где р — величина, зависящая от рода вещества и его состояния (от тем­пературы в первую очередь). Вели­чину р называют удельным сопротивлением проводника. Удельное сопротивление численно равно сопротивлению проводника, имеющего форму куба с ребром 1 м, если ток направлен вдоль нормали к двум противоположным граням куба.

Проводник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока в нем 1 А.

Единицей удельного сопротивления является 1 Ом-м.

Последовательное    соединение проводников. При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом.

Сила тока в обоих проводниках одинакова, т.е. I1=I2=I так как в проводниках электрический заряд в случае постоянного тока не накапливается и через любое поперечное сечение проводника за определенное время проходит один итот же заряд.

Напряжение на концах рассматриваемого участка цепи складывается из напряжений на первом и втором проводниках: U=U1+U2

Полное сопротивление всего участка цепи при последовательном соединении равно: R=R1+ R1

Параллельное соединение проводников.

29. Электродвижущая сила. Закон Ома для полной цепи.

 Электродви­жущая сила в замкнутом контуре представляет собой отношение рабо­ты сторонних сил при перемещении заряда вдоль контура к заряду:

Электродвижущую силу выража­ют в вольтах.

Электро­движущая сила гальванического эле­мента есть работа сторонних

сил при перемещении единичного положи­тельного заряда внутри элемента от одного полюса к другому.

Сопротивление источника часто на­зывают внутренним сопротивлением в отличие от внешнего сопротивле­ния R цепи. В генераторе r это сопротивление обмоток, а в гальва­ническом элементе — сопротивление раствора электролита и электродов. Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление R+r цепи.

 Произведение силы тока и сопро­тивления участка цепи часто назы­вают падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внут­реннем и внешнем участках замкну­той цепи. Обычно закон Ома для замкну­той цепи записывают в форме:

где R – сопротивление нагрузки, ε –эдс , r- внутреннее сопротивление.

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Сила тока зависит от трех вели­чин: ЭДС ε, сопротивлений R и r внешнего и внутреннего участков цепи. Внутреннее сопротивление ис­точника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи (R>>r). При этом напряжение на зажимах источ­ника приблизительно равно ЭДС:

U=IR≈ε.

При коротком замыкании, когда R→0, сила тока в цепи определяет­ся именно внутренним сопротивле­нием источника и при электродви­жущей силе в несколько вольт мо­жет оказаться очень большой, если r мало (например, у аккумулятора r0,1—0,001 Ом). Провода могут расплавиться, а сам источник выйти из строя.

Если цепь содержит несколько

последовательно соединенных эле­ментов с ЭДС ε1 , ε2, ε3 и т.д., то полная ЭДС цепи равна алгебраи­ческой сумме ЭДС отдельных элементов.

Если при обходе цепи переходят от отрицательного полюса источника к положительному, то ЭДС >0.

30. Работа и мощность тока. Закон Джоуля – Ленца.

Работа тока равна: A=IU∆t или A=qU, если ток постоянный, то из закона Ома:

                                                                      q = It → Iut

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.

Нагревание происходит, если сопротивление провода высокое

Мощность тока. Любой электрический прибор (лампа, электродвигатель) рассчитан на потребление определенной энергии в единицу вре­мени.

Мощность тока равна отношению работы тока за времяt к этому интервалу времени. Согласно этому определению:

Количество теплоты определяется по закону Джоуля – Ленца:

Если электроток протекает в цепи, где не происходят хим. Реакции и не совершается механическая работа, то энергия электрополя превращается во внутреннюю энергию проводника и его температура возрастает. Путем теплообмена эта энергия передается окружающим, более холодным телам. Из закона сохранения энергии следует, что количество теплоты равно работе электрического тока:

                                                     (формула)


Этот закон называется законом Джоуля- Ленца.

31. Магнитное поле. Индукция магнитного поля. Закон Ампера.

Взаимодействия между проводниками с током, т. е. взаимодействия между движущимися электрическими зарядами, называют  магнитными. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами.

Магнитное поле. Согласно теории близкодействия ток в одном из проводников не может непосредственно действовать на ток в другом проводнике.

В пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле, в пространстве, окружающем токи, возникает поле, называемое магнитным.

Электрический ток в одном из проводников создает вокруг себя магнитное поле, которое действует на ток во втором проводнике. А поле, созданное электрическим током второго проводника, действует на первый.

Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными части­цами.

Свойства магнитного поля:

1. Магнитное поле порождается электрическим током (движущимися зарядами).

2. Магнитное поле обнаружива­ется по действию на электрический ток (движущиеся заряды).

Подобно электрическому полю, магнитное поле существует реально, независимо от нас, от наших знаний о нем.

Магнитная индукция – способность магнитного поля оказывать силовое действие на проводник с током (векторная величина). Измеряется вТл.

За направление вектора магнит­ной индукции принимается направ­ление от южного полюса S к север­ному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.

Направление вектора магнитной индукции устанавливают с помощью правила буравчика:


если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

 Линии магнитной индукции.

Линия, в любой точке которой вектор магнитной индукции направлен по касательной – линии магнитной индукции. Однородное поле – параллельные линии, неоднородное поле – кривыми линиями. Чем больше линий, тем больше сила этого поля. Поля с замкнутыми силовыми линиями называют вихревыми. Магнитное поле - вихревое поле.

Магнитный поток –величина равная произведению модуля вектора магнитной индукции на площадь и на косинус угла между вектором и нормалью к поверхности.

Сила Ампера равна произведению вектора магнитной индукции на силу тока, длину участка проводника и на синус угла между магнитной индукцией и участком проводника.

где l – длина проводника, B – вектор магнитной индукции.

Силу Ампера применяют в громкоговарителях, динамиках.

Принцип работы: По катушке протекает переменный электрический ток с частотой, равной звуковой частоте от микрофона или с выхода радиоприемника. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя в такт с колебаниями тока. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны.


32. Действие магнитного поля на движущийся заряд. Сила Лоренца.

Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называю силой Лоренца.

 Сила Лоренца. Поскольку ток представляет собой упорядоченное движение электрических зарядов, то естественно предположить, что сила Ампера является равнодействующей сил, действующих на отдельные за­ряды, движущиеся в проводнике. Опытным путём установлено, что на за­ряд, движущийся в магнитном поле, действительно действует сила. Эту силу называют силой Лоренца. Модуль FL силы находится по формуле

где В — модуль индукции магнитного поля, в котором движется заряд, q и v — абсолютная величина заряда и его скорость, a - угол между векторами v и В. Эта сила перпендикулярна к векторам v и В, её направление находится по правилу левой руки: если руку расположить так, чтобы четыре вытянутых пальца совпадали с направлением движения положительного заряда, линии индукции магнитного поля входили в ладонь, то отставленный на 900 большой палец показывает направление силы. В случае отрицательной частицы направление силы противоположное.

Так как сила Лоренца перпендикулярна скорости частицы, то. она не совершает работу.

Силу Лоренца применяют в телевизорах, масс-спектограф.

Принцип работы: Вакуумная камера прибора помещена в магнитное поле. Ускоренные электрическим полем заряженные частицы  (электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории. По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко определить его массу.



33. Магнитные свойства вещества. Магнитная проницаемость. Ферромагнетизм.

Магнитная проницаемость. Постоянные магниты могут быть изготовлены лишь из немногих веществ, но все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами создают магнитное поле. Благодаря этому вектор магнитной индукции В в однородной среде отличается от вектора Во в той же точке пространства в вакууме.

Отношение  характеризующее магнитные свойства среды, получило название магнитной  проницаемости среды.

 В однородной среде магнитная индукция равна:                        где m магнитная проницаемость данной среды безразмерная величина, показывающая во сколько раз μ в данной среде, больше μ в вакууме.

Магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.

Парамагнетиками называются вещества, которые создают слабое магнитное поле, по направлению совпадающее с внешним полем. Магнитная проницаемость наиболее сильных парамагнетиков мало отличается от единицы: 1,00036- у платины и 1,00034- у жидкого кислорода. Диамагнетиками  называются вещества, которые создают поле, ослабляющее внешнее магнитное поле. Диамагнитными свойствами обладают серебро, свинец, кварц. Магнитная проницаемость диамагнетиков отличается от единицы не более чем на десятитысячные доли.

Ферромагнетики и их применение. Вставляя железный или стальной сердечник в катушку, можно во много раз усилить создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромагнетиков.

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т. е. создает магнитное поле в окружающем пространстве. Упорядоченная ориентация элементарных токов не исчезает при выключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты.

Постоянные магниты находят широкое применение в электроизмерительных приборах, громкогово­рителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т. д.

Большое применение получили ферриты — ферромагнитные материалы, не проводящие электрического тока. Они представляют собой химические соединения оксидов железа с оксидами других веществ. Первый из известных людям ферромагнитных материалов—магнитный железняк — является ферритом.

 Температура Кюри. При температуре, большей некоторой опреде­ленной для данного ферромагнетика, ферромагнитные свойства его исчезают. Эту температуру называют температурой Кюри. Если сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы. Температура Кюри для железа 753 °С, для никеля 365 °С, а для кобальта 1000°С. Существуют ферромагнитные сплавы, у которых температура Кюри меньше 100°С.


34. Электромагнитная индукция. Магнитный поток.

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.