Меню
Поиск



рефераты скачать Види теплогенераторів

Друга частина перегрівника виконана з труб 38 ´ 4,5 мм з вуглецевої сталі, перша частина - з труб 42 ´ 6 мм з малолегованої хромомолібденової сталі, змійовики приєднуються до колекторів приварюванням.

Щоб, котла високого тиску, пароперегрівник працював надійно, треба рівномірно розподіляти пару по змійовиках. Цього досягають вибором раціональної схеми підведення пари до колекторів і зміною швидкості пари в колекторах і змійовиках. Швидкість пари в осьовому напрямку в колекторі повинна бути мінімальною, а швидкість пари в змійовиках значною. Для цього розподіляють підведення пари до колектора і доводять швидкість пари в змійовиках котлів високого тиску до 10-15 м/сек. Спад тиску пари в перегрівнику звичайно допускається до 10% від тиску пари в котлоагрегаті.

Для нормальної роботи котлів дуже важливе значення має регулювання температури перегрітої пари за допомогою комбінованих перегрівників з плавною характеристикою, регулювання по газовій стороні (поворотними пальниками, шиберами і т. п.), регулювання по паровій стороні. У сучасних агрегатах як основний і найбільш надійний застосовується швидкий і тонкий метод регулювання по паровій стороні впорскуванням конденсату в потік пари. Це здійснюється в пароохолодниках змішувального типу. В агрегатах надвисокого і надкритичного тиску впорскування провадиться в двох точках парового тракту: в початковій його частині і поблизу вихідного колектора, там, де ентальпія пари на 125-210 кдж/кг менша від кінцевої її ентальпії, що відповідає температурі перегрітої пари у вихідному колекторі.

4.2 Водяні економайзери


Основне призначення водяного економайзера - підігрівання живильної води за рахунок теплоти димових газів. Проте в ряді випадків вода в економайзері не тільки підігрівається, а й частково (до 20% від ваги) перетворюється в пару. Такі економайзери називаються киплячими.

Заміна хвостової котельної поверхні нагріву економайзерною вигідна, бо економайзер працює з вищим середнім температурним напором, ніж котельна поверхня, розміщена в тому самому газоході, оскільки середня температура води в економайзері нижча за температуру води в котлі. Ця температура дорівнює температурі насичення при даному тискові. Тому поверхня нагріву економайзера при тому самому значенні температури димових газів значно менша від температури котельної поверхні нагріву. В той самий час вартість 1 м2 поверхні нагріву економайзера менша, ніж вартість 1 м2 котла.

Водяні економайзери виготовляються з чавунних або стальних труб. Чавунні економайзери виконуються з ребристих труб і застосовуються в установках низького і середнього тиску (у нас - тільки до 22 бар). Розміщення труб горизонтальне, з'єднуються вони між собою зовнішніми чавунними калачами. Чавунні економайзери корозостійкі і порівняно дешеві, але громіздкі і мають багато фланцевих з'єднань. У них, щоб запобігти гідравлічним ударам, які виникають при закипанні води, допускають обмежене підігрівання води (температура води на виході з економайзера повинна бути на 40° С нижчою від температури насичення).

У котельних агрегатах високого тиску застосовують стальні водяні економайзери змійовикового типу, аналогічні за конструктивною схемою до пароперегрівників. Вони можуть бути некиплячими і киплячими.

Котел високого тиску типу ТП-230 Таганрозького котельного заводу з горизонтальним розміщенням труб у шаховому порядку. Труби змійовиків діаметром 32 ´ 4 мм виготовлені з вуглецевої сталі. Економайзер складається з трьох пакетів. Живильна вода надходить у нижні колектори і підігріта відводиться з верхнього колектора. Вона проходить по змійовиках знизу вгору, щоб полегшити видалення з економайзера газових і парових бульбашок. Гази рухаються зверху вниз, обмиваючи зовні труби економайзера. Протитокова схема забезпечує високий середній температурний напір. Пакети труб спираються на стальні порожнисті охолоджувані повітрям балки. Колектори економайзера розміщені поза обмурівкою.

Щоб запобігти корозії і розшаруванню пароводяної суміші у вихідних змійовиках, треба стежити, щоб швидкість води в трубах економайзера була в не киплячих пакетах не менш як 0,5 м/сек, а в киплячих - не менш як 1 м/сек.

Для захисту економайзера від зовнішньої корозії температура води, що надходить до нього, повинна бути вища за температуру точки роси димових газів tр. Значення коливається при спалюванні вологого палива з незначним вмістом сірки від 20 до 60° С, а при спалюванні сірчистого палива воно досягає 130-140° С.


4.3 Повітропідігрівники


Потреба у повітропідігрівниках у котельних установках зумовлена тим, що при регенеративному підігріванні живильної води не можна глибоко охолодити димові гази у водяних економайзерах, бо вода, що надходить до них, має дуже високу температуру. В той самий час підігрівання повітря, що підводиться в топку, корисне для підвищення ефективності топкового процесу. Воно дає змогу працювати з меншим коефіцієнтом зайвини повітря і меншою неповнотою згоряння. Таким чином, внаслідок підігрівання повітря знижуються основні витрати котельного агрегату (q2, q3, q4).

За способом передачі теплоти повітропідігрівники поділяються, на рекуперативні і регенеративні. В рекуперативних повітропідігрівниках теплота від газу до повітря передається безпосередньо через роздільну стінку. В регенеративних повітропідігрівниках металеві або керамічні насадки обмиваються почергово газом і повітрям. Газ нагріває насадку, в ній акумулюється теплота, яка потім передається повітрю.

Рекуперативні повітропідігрівники бувають чавунні і стальні. У великих установках застосовують стальні повітропідігрівники. Вони можуть бути пластинчастими й трубчастими. В наших енергетичних котельних агрегатах застосовуються трубчасті повітропідігрівники, які виготовлені з тонкостінних труб (d = 1,25 ¸ 1,5 мм) із зовнішнім діаметром 25-40 мм. Із зменшенням діаметра труб збільшується коефіцієнт теплопередачі і підігрівник стає компактнішим.

Трубчастий повітропідігрівник складається з багатьох розміщених у шаховому порядку труб, приєднаних до трубних дощок. Проміжні перегородки поділяють повітропідігрівник на дві половини. Газ рухається всередині труб зверху вниз. Повітря подається вентилятором праворуч у нижню половину повітропідігрівника, обмиває поперечним потоком труби повітропідігрівника зовні, надходить у перепускний короб, а з нього - в міжтрубний простір верхньої половини повітропідігрівника. При цьому повітряний потік повертає на 180° і рухається у верхній половині повітропідігрівника зліва направо.

Останнім часом у потужних котельних агрегатах стали широко застосовувати регенеративні повітропідігрівники. Вони значно компактніші і легші від рекуперативних і менш чутливі до корозійних поразок.

Регенеративний обертовий повітропідігрівник - це циліндр, заповнений насадкою у вигляді тонких гофрованих залізних листів, що обертається навколо вертикальної осі із швидкістю 2 об/хв. При цьому насадку поперемінно обмиває то газовий, то повітряний потік. Рух газу й повітря протитокові. Газова й повітряна сторони розділені секторною плитою. Для зменшення перетікання повітря до газу передбачено ущільнене обладнання.

Помірне підігрівання повітря застосовують водносхідчастих повітропідігрівниках. При високому повітропідігріванні (320-420° С) застосовують двосхідчасті повітропідігрівники з установкою водяного економайзера в розсічку між першим і другим східцем повітропідігрівника, бо підігрівання повітря до високої температури при односхідчастій схемі або економічно не вигідне, або взагалі неможливе.

4.4 Основи теплового розрахунку конвективних елементів


Конвективні поверхні нагріву виконуються здебільшого (за винятком регенеративних повітропідігрівників) у вигляді трубних пучків або пакетів, установлених упоперек або вподовж руху обмиваних димових газів. Пучки можуть бути двох типів: з коридорним і з шаховим розміщенням труб.

Існує два види теплового розрахунку конвективних елементів (аналогічно до розрахунку топки): конструктивний і перевірний. Конструктивним розрахунком визначають розміри потрібної тепло-сприймальної поверхні елемента. При перевірному розрахунку за відомою поверхнею нагріву елемента (або пакета) визначають температури газів і робочої речовини (води, газу і повітря) на виході з елемента. Перевірний розрахунок виконують не тільки під час перерахунку агрегату на інший вид палива або відмінне від номінального навантаження і т. п., але й під час проектування нових агрегатів. При цьому поверхня нагріву елементів намічається на основі загальних компоновочних міркувань, а перевірним розрахунком уточнюють їх теплосприймання.

Для теплового розрахунку конвективних елементів користуються рівняннями теплообміну і теплового балансу.

Рівняння конвективного теплообміну записуємо у вигляді закону охолодження Ньютона:

Qгод = kHDt кдж/год,                                (1)


з якого виходить, що кількість переданої за одиницю часу теплоти пропорційна температурному напорові і розмірові поверхні нагріву; k - коефіцієнт теплопередачі, вт/м2 град.

Поверхня нагріву обчислюється по стороні максимального термічного опору; в котельних, перегрівальних і економайзерних поверхнях нагріву - по газовій стороні. В тих випадках, коли термічний опір з обох сторін одного порядку, як, наприклад, у повітропідігрівниках, у розрахунок вводиться середня по повітрю і по газовій стороні величина H.

Коефіцієнт теплопередачі (теоретичний) для незабрудненої поверхні нагріву

 вт/м2 × град.                             (2)


Коефіцієнт тепловіддачі від газів до стінки a1 = (30¸70); lcm = (52-для вуглецевої сталі, 15-для аустенітової); dcm - порядку кількох тисячних (0,003¸0,006); коефіцієнт віддачі a2 від стінки до води для економайзерних і паротвірних поверхонь нагріву - порядку кількох тисяч і десятків тисяч (3000-30000). Тому для чистих економайзерних і котельних поверхонь нагріву інтенсивність теплопередачі практично цілком визначається інтенсивністю тепловіддачі від газів до стінки:

km @ a1                                                  (3)


Для пароперегрівників, де a2 - порядку кількох сотень (580-2320), і особливо для повітропідігрівників, де a2 такого ж порядку, як і a1, нехтувати величиною - не можна. Для них

.                                      (4)

4.5 Визначення a1, a2, k і Dt


Величину a1 знаходять з формули:


a1 = wak + an вт/м2 × град,                                 (5)


де w - коефіцієнт обмивання, який ураховує зменшення тепло-сприймання поверхні нагріву внаслідок неповного обмивання її газами; для сучасних котельних агрегатів w близький до одиниці; ak - коефіцієнт тепловіддачі конвекцією, вт/м2 × град; an - коефіцієнт тепловіддачі випромінювання, вт/м2 × град.

Критеріальні рівняння для тепловіддачі конвекцією до одиничної труби при примусовому рухові має вигляд:

Nu = соnst RemPrn.                                      (6)

У випадку газового теплообміну рівняння (IV-6) спрощується, бо Рr є функцією атомності газів, а склад димових газів коливається в невеликих межах. Тому Рrn можна ввести в константу, і рівняння (IV-6) може бути записане так:


Nu = CRem.


Беручи до уваги, що , а , можна дістати формулу для ak:


.                                      (7)


За цією формулою можна простежити вплив на ak основних факторів. Стала С і показник ступеню т визначаються з дослідів. Величина т менша за одиницю; для поперечного обмивання m @ 0,6¸0,65. З формули (IV-7) видно, що із зростанням швидкості газів w коефіцієнт тепловіддачі конвекцією ak зростає, з ростом зовнішнього діаметра d труби ak зменшується. Крім того, ak залежить від фізичних властивостей газу, його теплопровідності l і кінематичної в'язкості n.

При перпендикулярному або косому обмиванні пучків ak залежить від типу пучка (коридорний, шаховий), його геометричної конфігурації, яка характеризується відносним кроком труб s1/d і відносним повздовжнім кроком s2/d, і від числа рядів труб z по глибині пакета.

При повздовжньому зовнішньому обмиванні пучків труб треба вводити в розрахунок еквівалентний діаметр.

Практично ak визначають не за формулами типу (IV-7), а за складеними з цією метою номограмами.

Коефіцієнт тепловіддачі випромінюванням продуктів згоряння ураховує випромінювання триатомних газів (СО2, SО2, Н2O) і частинок леткої золи. Це кількість теплоти, переданої випромінюванням Qn вт/м2, віднесена до різниці температур газів і стінки J - tcm.

Визначення an, можна провести за формулою:

 вт/м2 × град,                       (8)


де аст = 0,82 - міра чорноти стінок променесприймальних поверхонь; а = 1 - е-kps - міра чорноти запиленого газового потоку; kps = (krrn + knm) × ps - сумарна сила поглинання потоку; kr і kn - коефіцієнти ослаблення променів триатомними газами і пилом золи, що визначаються за емпіричними формулами;  - сумарна об'ємна частка Н2О і RО2; m - концентрація частинок золи у продуктах згоряння, г/м3; р - тиск продуктів згоряння, бар; s - ефективна товщина випромінювального шару, м, що визначається для пучків з формули , де а і b - числові коефіцієнти, різні для густих і рідких пучків.

При розрахунках для визначення an і допоміжних величин також користуються номограмами.

Знайшовши ak і an, з формули (IV-5) дістанемо значення a1; a2 для повітропідігрівників і пароперегрівників знаходимо так само, як і ak.

У загальному випадку для діючого котельного агрегату


.                                        (9)


Величина  мала настільки, що при обчисленні її не враховують. Для котельних агрегатів середнього і високого тисків, що працюють при безнакипному режимі, також не враховують величину . Коефіцієнт забруднення  оцінюється на підставі рекомендацій, що наводяться в нормах теплового розрахунку котельних агрегатів.

Коефіцієнт теплопередачі з урахуванням зовнішнього забруднення для котельних і економайзерних поверхонь нагріву

 вт/м2 × град,                              (10)


а для пароперегрівників

 вт/м2 × град.                       (11)

Для повітропідігрівників вводять загальний коефіцієнт використання поверхні нагріву x:

 вт/м2 × град.                              (12)


Середній температурний напір Dt залежить від взаємного напрямку руху середовищ. Для найчастіше вживаних схем прямотоку і протитоку температурний напір визначається як середньо-логарифмічна різниця температур за формулою (III-63).

За цією формулою розраховується Dt не тільки для чистого прямотоку й протитоку, але й для схем східчастого прямотоку й протитоку, що найчастіше зустрічаються в пароперегрівниках і водяних економайзерах. Для схем, відмінних від прямотоку й протитоку (перехресний потік теплоти), Dt визначають на основі спеціальних розрахункових рекомендацій і номограм.


4.6 Загальна схема розрахунку конвективних елементів

Звичайно, при тепловому розрахунку користуються рівняннями теплообміну і теплового балансу, записаними не в кдж на годину, a в кдж на 1 кг палива.

Рівняння теплообміну:

 кдж/кг.                                   (13)


Рівняння теплового балансу:

Q = j(I¢ - I¢¢ + DaIпрс°) кдж/кг                                   (14)


де Q - теплота, сприйнята розраховуваним елементом, віднесена до 1 кг палива; Вр - розрахункова витрата палива, кг/год; j - коефіцієнт збереження теплоти, що враховує втрату теплоти в навколишнє середовище (j @ 1); I¢ і I¢¢ - ентальпії продуктів горіння на вході і виході з елемента, кдж/кг; DaIпрс° - кількість теплоти, що вноситься присмоктуваним повітрям, кдж/кг.

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.