Меню
Поиск



рефераты скачать Взаимодействие бета-частиц с веществом

Учет квантовомеханических эффектов  приводит к  несколько иному выражению

Предел  определяется из энергии связи электрона в ато­ме, ибо при передаче энергии, меньшей характерной энергии воз­буждения атома, возбуждение его вообще не произойдет.

В релятивистском случае нужно учесть, что поле падающей частицы сжимается в направлении движения, а величина Ен увели­чивается в  раз, где = .   Это приводит к тому, что энергия будет передаваться также и более удаленным электронам

где  — средний ионизационный  потенциал атомов поглощающего вещества.

Точный подсчет дает окончательно для ионизационных потерь энергии тяжелой частицей

 (19)


Если через вещество проходит не тяжелая частица, а электрон (Z=l), то формула (19) немного изменится, так как сам электрон будет отклоняться в процессе взаимодействия от своего первона­чального направления и, кроме того, возникнут так называемые обменные эффекты, имеющие квантовую природу.

В этом случае выражение для удельных потерь будет

 (20)


где — кинетическая энергия электрона.

Графически зависимость удельных   ионизационных   потерь от энергии тяжелых частиц имеет вид, показанный на рис. 15. Рас­смотрим физический смысл от­дельных членов выражения (19) и поясним ход кривой.

Рис.   15.   Зависимость   иониза­ционных    потерь    от    энергии для тяжелых частиц

Начальный участок АВ. В этом случае выведенной фор­мулой пользоваться нельзя, так как при малых энергиях импульс налетающей частицы сравним с импульсом орбитального движе­ния электронов. Поэтому траек­торию налетающей частицы в процессе взаимодействия нельзя считать прямолинейной, и, кроме того, эта частица не может передать необходимую для возбуждения атома энергию.

 Участок ВС. Здесь в основном действует закон . По мере увеличения скорости частицы сама сила Fн не меняется, но меняет­ся время, взаимодействия, а следовательно, меняется и импульс силы, и передаваемая энергия.

По мере приближения    к  скорости света уменьшение  становится все более медленным, и при скоростях   величина  принимает минимальное значение; далее наблюдается логарифмический рост потерь.


Участок CD. Слабый подъем обусловлен эффектом лоренцевского сжатия поля, из-за которого энергия передается все более и более далеким электронам (Ен увеличивается в  раз).

Участок DE. При дальнейшем увеличении энергии, когда па­раметр больше расстояний между атомами, рост потерь ограничивается из-за того, что действующая, на далекий электрон сила уменьшена возникающей под действием поля частицы поля­ризацией среды. Эта сила в е раз меньше, чем в пустоте (). На этом участке формула (19) уже несправедлива. С другой стороны, при далеких соударе­ниях возникает новое физическое явление — так называемое излу­чение Вавилова—Черепкова, приводящее к дополнительным поте­рям энергии.

Из формулы (19)  можно сделать основной вывод, что удель­ные потери энергии на ионизацию атомов:

пропорциональны квадрату заряда движущейся частицы (Ze)2,
пропорциональны концентрации электронов в среде ,
являются функцией скорости f(v) и                     )

не зависят от массы налетающей частицы М, т. е.

 (21)

Так как величина удельных ионизационных потерь зависит от скорости и заряда частицы, то при одной и той же энергии удель­ные ионизационные потери для электрона будут во много раз меньше, чем для протона или -частицы. Например, при энергиях порядка нескольких МэВ ионизационные потери электрона пример­но в 10 000 раз меньше, чем у -частиц. Именно поэтому у -частиц и электронов такая различная проникающая способность: -частица в воздухе проходит всего лишь несколько сантиметров, прежде чем замедлится до тепловых скоростей, тогда как путь электрона такой же энергии измеряется десятками метров.

На наблюдении ионизации основан один из самых распрост­раненных методов определения энергии медленных заряженных частиц. Определяется число пар ионов, создаваемых частицей на полном ее пути в веществе, и если известна средняя энергия , необходимая для образования одной пары ионов, то можно найти полную энергию частицы. Для -частицы, например, с энергией

1 МэВ в воздухе  = 35 эВ.        

Простой вид зависимости от параметров частицы и сре­ды позволяет легко пересчитывать ионизационные потери, если нужно перейти к другим частицам и средам. Например, если изве­стны потери на ионизацию протона массы mp как функция его энергии, то в области справедливости формулы (5) величина dE/dx может быть найдена при такой же энергии и для любой другой единично заряженной частицы с массой М путем умноже­ния значения потерь энергии на величину отношения масс М/тр.

Действительно, согласно (17) потери энергии на ионизацию
не зависят от массы частицы, но обратно пропорциональны квад­рату ее скорости. Поэтому при равных энергиях они и будут про­порциональны значениям масс.

В релятивистском случае потери энергии, как уже говорилось, пропорциональны логарифму    квадрата   скорости, и поэтому при одинаковых энергиях различие по массам в 2000 раз меняет иони­зационную способность лишь в два раза.

Подобный пересчет может быть сделан и для падающих час­тиц с другим зарядом.

Пробег заряженных частиц в веществе.


Под пробегом части­цы R в каком-нибудь веществе понимается толщина слоя этого вещества, которую может пройти частица с энергией  до полной остановки, если направление ее движения было перпендикулярно поверхности слоя.

По существу эта величина более или менее определенна лишь для тяжелых частиц, путь которых практически является прямой линией; и по этой причине разброс в величине пробега для частиц одинаковой энергии невелик. У легких частиц, например у электро­нов малых энергий, вероятность рассеяния велика и поэтому поня­тие пути и понятие пробега для них не совпадают. По измеренному пробегу частицы в среде можно определять ее энергию, или, зная зависимость величины пробега от энергии, определять массу час­тицы.

Для данной среды   и   для  частицы    с   зарядом Ze величина  является функцией только скоростей         , а следовательно, у частицы с известной массой функцией только ки­нетической энергии

Зная вид функции , можно найти и полный пробег частицы

   (22)

Для нерелятивистских энергий  можно записать

 (23)

 (24)

Подставив (23) и (24) в (22) и произведя интегрирование, получим

 (25)

Из этого соотношения следует, что:

1) при равных скоростях пробеги заряженных частиц в веществе пропорциональны массам этих частиц и обратно пропорциональны квадратам зарядов:

2) при равных энергиях частиц  их   пробеги обратно пропор­циональны массам:

Пробеги заряженных частиц часто выражают в г/см2.

и пользуются выражением удельных потерь в форме:

Измерять пробеги в г/см2 удобно, потому что удельные ионизационные потери в легких веществах, рассчитанные на г/см2, оди­наковы в разных средах. Действительно, мы видели, что  и, следовательно,

Однако число электронов, содержащихся в 1 см3 вещества, равно

где N0 — число Авогадро, А — атомный вес вещества.

Так как у легких элементов , то в слое любого лег­кого вещества толщиной 1 г/см2 будет содержаться примерно N0/2 электронов:

,

а это означает, что

Для однозарядных релятивистских частиц

 (26)

и слабо убывает с ростом Z вещества.

На основании формулы для пробега частиц (25), примененной к однородному пучку, который    проходит   слой    поглотителя без рассеяния, можно построить зависимость числа частиц, прошедших через поглотитель, от толщины слоя. Эта кривая изображена на рис. 54. Для монохроматического пучка -частиц она удовлетво­рительно совпадает с экспериментом (пунктир).







Рис. 16. Зависимость числа моноэнергетических   частиц,   прошед­ших поглотитель, от его толщины: а — а-частиц; б — электронов


Конечный участок экспериментальной кривой не вертикален, а имеет небольшой на­клон вследствие статистического характера процесса потери энер­гии. Частицы теряют свою энергию в очень большом, но конечном числе отдельных актов. Флуктуации подвержено как число таких актов на единицу длины, так и потери энергии в каждом отдель­ном акте. В соответствии с этим и пробеги -частиц испытывают статистические флуктуации. Однако величина разброса пробегов незначительна и составляет приблизительно 1%  от полного пробега для -частиц с энергией 5 Мэв (масштаб на рис. 4, а не соблюден).

Поэтому по пробегу -частицы можно с хорошей степенью точности определять их энергию. Электроны же испытывают в ве­ществе многократное рассеяние, направление их движения часто меняется и только в наиболее благоприятных случаях электроны проходят максимальное расстояние в поглотителе в направлении, перпендикулярном к его поверхности. Кривая поглощения колли-мированного пучка моноэнергетических электродов имеет вид, от­личный от аналогичной кривой для -частиц (рис. 16,б). Поэтому энергию электронов нельзя определять по пробегу, а надо изме­рять полную ионизацию, произведенную ими в веществе.


Ядерное взаимодействие


Потери энергии за счет ядерного взаимодействия: рассеяния на ядерных силах, ядерных реакций — имеют большое значение только для сильновзаимодействующих (ядерноактивных) частиц, например -мезонов и протонов высокой энергии,  и -излучение, возникающее при радиоактивном распаде практически не испыты­вает ядерных взаимодействий.

Поскольку ядерные силы короткодействующие, частица долж­на приблизиться к ядру на расстояние порядка радиуса ядра R~1012 см. Характерный же параметр удара для ионизационных потерь см. Вероятность тех или иных физических явлений, определяется эффективным сечением . По­этому для взаимодействий, обусловленных ядерными силами, , а для ионизационных потерь ,а их отношение , т. е. только в одном слу­чае из 107—108 столкновений происходит ядерная реакция. Таким образом, ядерная реакция — событие очень редкое даже для частиц высокой энергии.

Однако при каждой ядерной реакции частица теряет значи­тельную часть своей энергии, в то аремя как при столкновении с атомной оболочкой она теряет всего  и таким образом ядерноактивные частицы при прохождении через среду эффективно выбывают из коллимированного пучка за счет процессов поглощения и рассеяния. Подробнее различные ядерные реакции бу­дут рассмотрены в соответствующем раз­деле.

Электроны, испускаемые ядрами при радиоактивном называются - минус - или просто - частицами. При радиоактивном распаде также могут испускаться  - плюс - частицы, масса которых равна массе электрона, заряд их равен заряду электрона, но положителен. Эти частицы называются позитронами. Взаимодействие с веществом электронов и позитронов имеет много общего, поэтому их можно рассматривать совместно.

При движении через вещество быстрые - частицы взаимодействуют с электрическими оболочками атомов и атомными ядрами среды. Взаимодействие осуществляется электрическими (кулоновскими) силами. Основными типами взаимодействия являются упругое рассеяние, неупругое рассеяние и радиационное торможение.

В результате упругого рассеяния - частица после столк­новения с атомом изменяет направление и скорость движения, но суммарная кинетическая энергия - частицы и атома не меняет­ся. Упругое рассеяние - частиц на атомных электронах в z раз менее вероятно, чем на атомных ядрах (z – заряд ядра), и осуществляется при относительно низких энергиях - частиц (E0 < 0,5 МэВ). При малых энергиях угловое распределение рассеянных - частиц описывается уравнением Резерфорда (5.1), которое справедливо для однократного рассеяния электронов, то есть для тонких слоев вещества.

                                                                            (5.1)

где P() - относительное число частиц, рассеянны: в единицу телесного угла в направлении, составляющем угол  с направлением пучка - частиц; n – число атомов в 1 куб. см; x - толщина рассеивающей пластинки; Z - заряд ядер рассеивающей среды; z, m, - заряд, масса и скорость рассеиваемых частиц.

С увеличением толщины поглощающего слоя рассеяние перехо­дит в гауссово, а при значительных толщинах становится диффуз­ным и не зависит от толщины.

Полное сечение упругого ядерного рассеяния .

Эффективное сечение рассеяния бета - частиц на атомных электронах пропорционально .

Таким образом

Для водорода (Z=0) вероятности этих процессов одинаковы, а для тяжелых ядер имеет место преимущественно ядерное рассеяние.

При неупругих соударениях за счет кинетической энергии бета - частиц происходит возбуждение или ионизация атомов. Величина потери энергии на единице пути dE/dx (удельные ионизационные потери) на ионизацию и возбуждение описываются уравнением,

                                                                               (5.2)

где E - кинетическая энергия, n - число атомов в единице объема, Z - заряд ядра поглотителя, e - заряд электрона, B - коэффициент торможения; z, m, - заряд, масса, скорость бета - частицы.

Из уравнения (5.2) следует, что с ростом энергии бета - частицы ионизационные потери уменьшаются:

Электроны, которые освобождаются в процессе первичной ионизации, часто обладают большими энергиями и производят дополнительную, или вторичную ионизацию. Полная ионизация представляет собой сумму первичной и вторичной ионизации.

Ионизационные потери энергии сопровождаются характеристическим рентгеновским излучением возникающим при заполнении свободных уровней электронами.

При движении быстрых бета - частиц через поглощающую среду существенную роль играют потери на излучение. Взаимодействие бета - частиц с кулоновским полем атомных ядер приводит к торможению бета - частиц с испусканием тормозного излучения. В соответствии с классической электродинамикой заряд, испытывающий ускорение a, излучает энергию

где e - заряд частицы, c - скорость электромагнитных волн.

Вследствие своей малой массы бета - частицы в кулоновском поле ядра могут испытывать большое ускорение, так как ускорение пропорционально заряду ядра Z, деленному на массу электрона.

Из теории следует, что величина удельных потерь, обусловленных излучением, определяется соотношением:

                                                                                 (5.3)

где E – энергия бета – частиц, Фрад - эффективное поперечное сечение для радиационных потерь, n - число атомов в единице объема.

Для медленных электронов (/ c << 1)

Для быстрых электронов ( / c  1)

Таким образом, радиационные потери растут с ростом энер­гии бета - частиц E, а для быстрых бета - частиц - несколько быстрее. Кроме того, они пропорциональны Z 2.

Отношение радиационных потерь энергии к ионизационным потерям равно


Энергия, при которой ионизационные потери равны радиационным, называется критической. Величина критической энергии для бета - частиц определяется приближенно соотношением:

 Полные потери энергии бета - частицами при энергиях ниже критической определяется, в основном, ионизационными потерями, а при энергиях выше - критической преобладают радиационные потери.

Замедленный позитрон соединяется с электроном, и пара аннигилирует. Энергия покоя двух частиц передается двум возникающим фотонам. Эти фотоны, представляющие собой так называемое аннигиляционное излучение, имеют энергию mc2 = 0,511 МэВ каждый и движутся в противоположных направлениях. Аннигиляция не является обычным этапом в судьбе электрона, так как количество позитронов, необходимых для этого процесса, обычно мало по сравнению с количеством электронов. Замедляясь, бета – минус - частица становится одним из электронов вещества.

Длина пробега заряженной частицы равна пути, на котором первичная кинетическая энергия частицы растрачивается за счет взаимодействия со средой, т.е.

                                                                                          (5.4)

Пробеги измеряются либо в единицах длины, либо в г / см2 (мг / см2), причем

Отсюда следует, что пробег частицы есть функция ее кинетической энергии, поэтому измерения длин пробегов частиц позволяет найти их кинетические энергии. Отметим, что определение истинной длины пути частицы в веществе по толщине поглощающего слоя возможно только для тяжелых частиц, которые не испытывают заметного рассеяния в кулоновских полях ядер. Для бета - частиц, в отличие от тяжелых частиц, траектория в веществе не является прямолинейной. Бета – частицы проходят в веществе довольно извилистые пути, а величины пробегов моноэнергетических электронов сильно отличаются между собой. Бета – частица на своем пути испытывает множество актов рассеяния на атомах вещества. Этим обусловлены изломы на его пути. Рассеяние может происходить при соударении с орбитальными электронами или с ядрами вещества поглотителя.

Число бета - частиц, прошедших поглотитель заданной толщины является постепенно уменьшающейся функцией толщины поглотителя. Максимальная толщина поглотителя, поглощающая практически все падающие на нее бета - частицы, характеризует так называемый практический (или эффективный) пробег. Практический пробег является функцией максимальной энергии бета - излучения E0.

Детальное изучение энергетического спектра бета - излучения производят спектрометрическими методам, (магнитный бета - спектрометр, кремниевый полупроводниковый детектор и т.д.), требующими сложной аппаратуры. В тех случаях, когда требуется определить максимальную энергию бета - спектра с точностью, не превышающей 5 %, используют метод поглощения.

Цель настоящей работы состоит в определении максимальной энергии бета - излучения методом поглощения.

Для определения максимальной энергии бета - частиц методом поглощения снимают кривую поглощения бета - излучения в веществе (как правило, в алюминии), то есть находит, пользуясь набо­ром тонких фольг, зависимость интенсивности бета - частиц I, прошедших через фольгу, от толщины поглотителя. При малых толщинах поглотителя поглощение бета - излучения в веществе подчиняется в первом приближении экспоненциальному закону, но точно этому закону не следует, и практический пробег бета - частиц составляет для различных элементов пяти – десяти -  кратную величину толщины слоя половинного поглощения.

Результаты измерения наносят на полулогарифмический график. По оси абсцисс наносят толщину слоя, а по оси ординат – логарифмы интенсивности излучения. В случае изотопа с простым бета – спектром (бета – частицы имеющие одну максимальную энергию) и испускающего еще и гамма – излучение получается кривая, показанная на рис. 5.1. Практический пробег R находится путем экстраполирования кривой поглощения к уровню фона от гамма – излучения, или применяют метод сравнения Физера, который позволяет определить пробег в каком – либо веществе путем сравнения кривой поглощения в этом веществе с кривой поглощения в веществе с известным пробегом.

Радиационное   торможение  электронов (тормозное излучение).


Рис. 17. Движение частицы в поле ядра

 
 





Согласно классиче­ской теории любая    заряженная   частица, Рис. 17.  движущаяся  с ускорением,  должна    излучать электромагнитные волны.    Допустим, что частица с зарядом е, массой т и ско­ростью движется мимо ядра, обладаю­щего массой Ми зарядом Zяe. При рассеянии кулоновским центром частица претерпевает отклонение  (рис. 17) и, следовательно получает ускорение. В соответствии с классической электродинамикой заряд, испытывающий ускорение  в течение времени излучает энергию

Поскольку , то . Таким образом, радиационные потери энергии наиболее существенны у самых легких частиц – электронов; для протонов, например, при той же энергии эффект уже в  раз меньше.

Релятивистский квантовый расчет, проведенный Бете и Гайтлером, позволяет найти потери энергии электроном на тормоз­ное излучение

 (27)

где  - так называемая постоянная тонкой структуры;  - классический радиус электрона;  п — число атомов в см3 вещества; Е—полная энергия   излучающего электрона.

Для того чтобы удобнее было сравнивать   потери энергии на излучение в различных веществах, вводится так называемая «ра­диационная» единица длины :

(28)

другими словами, весь коэффициент при Е, имеющий размерность  обозначается  . Тогда   и, если измерять толщину вещества в этих единицах, то

 и  (29)

Отсюда видно, что потери энергии электроном на одной  t - еди­нице длины не зависят от вещества (но сама эта единица для раз­ных веществ, конечно, различна). Интегрируя (29), получаем про­стой закон изменения энергии частицы

 (30)

где Ео— начальная энергия электрона. Следовательно, t -единица — это та длина, на которой энергия частицы уменьшается в е раз. Для воздуха, например, = 300 м, для свинца = 0,5 см.

Как видно из выражения (13), потери энергии на тормозное излучение подчиняются иным закономерностям, чем потери энер­гии вследствие неупругих соударений:

1) до энергий порядка тос2 они постоянны, а затем возра­стают пропорционально Е и при   достаточно   больших   энергиях

Рис 18. Зависимость потерь энергия на изучение

 
становятся преобладающими;



2) потери на излучение пропорци­ональны квадрату заряда ядра, поэто­му для тяжелых элементов они более существенны, чем для легких.

Если сравнить формулы для по­терь энергии электронов на иониза­цию и тормозное излучение (19) и (27), то можно найти отношение этих потерь:


Отсюда следует, что в воздухе, например, потери на излучение ста­новятся сравнимыми с потерями на ионизацию при Ео = 80 МэВ. Для свинца это наступает уже при Ео = 6 МэВ (энергия, при ко­торой потери на излучение становятся равными потерям на иони­зацию, называется критической энергией Eкр(рис. 18).

Поэтому относительный .вклад различных потерь энергии су­щественно зависит не только от вещества, массы, но и от энергии частицы.

Литература


1.    Г.Бете, Ю.Дж.Ашкин Прохождение — частиц через вещество. —В кн.: экспериментальная ядерная физика. Под ред. Э. Сегре. М.. 1955.

2.    Г.Кноп, В.Пауль Альфа-, бета-, гамма-спектроскопия. Под ред. К. Зигбана. Т. 1. М., 1969.

3.    Н.Бор Прохождение атомных частиц через вещество. М., 1950.

4.    Н.И.Штейнбок Измерение толщины покрытий методом рассеяния бета-излучения. — Применение радиоактивных излучателей в измерительной технике, 1960.

5.    Ц.С. Ву, С.А.Мошковский Бета-распад. М., 1970



Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.