Меню
Поиск



рефераты скачать Фотоприймачі з внутрішнім підсиленням

Фотоприймачі з внутрішнім підсиленням

Львівський Державний Університет

Ім. І.Франка

Кафедра нелінійної оптики

РЕФЕРАТ на тему:

„Фотоприймачі з внутрішнім підсиленням”

[pic]

Виконали:

Студенти факультету прикладної математики та інформатики

II-го курсу групи ПМІ - 21

Ганцаж Андріан та

Тимовчак Степан

Львів 1999

Зміст:

1. Загальні принципи роботи фотоприймачів (ФП).

2. Основні характеристики і параметри ФП.

3. Різні типи внутрішнього підсилення в ФП:

– звичайне підсилення на основі p-n-переходу (біполярні

транзистори);

– інжекційне підсилення;

– лавинне підсилення;

5. Застосування ФП з внутрішнім підсиленням.

6. Перспективи.

ФОТОПРОВІДНІСТЬ НАПІВПРОВІДНИКІВ

Оптична генерація носіїв току. Вільні носії, що беруть участь в електропровідності напівпровідника і знаходяться з решіткою у термодинамічній рівновазі, з'являються в результаті термічної генерації.
Вони називаються зрівноваженими, а провідність у цьому випадку – зрівноваженою провідністю. Поява вільних електронів і дірок може бути пов'язана з іншими чинниками, зокрема, із поглинанням оптичного випромінювання. Носії струму, що виникли в матеріалі, минаючи термічне збудження, називаються незрівноваженими. Відповідно і надлишкова провідність називається незрівноваженою.

При поглинанні фотона електронно-діркова пара одержує деяку надлишкову енергію і квазіімпульс. Зрівноважений розподіл фотоносіїв по енергіях і квазіімпульсах встановлюється за час, менший часу перебування у відповідних зонах. Тому вони встигають "термолізуватися", тобто розподіл їх по енергіях і квазіімпульсах стає таким же, як і для зрівноважених електронів і дірок.
Повна електропровідність:

( = q((nn0 + (pp0 + (n(n + (p(p), де n0 і p0 – зрівноважені концентрації електронів і дірок; (n, (p – незрівноважені їх концентрації.

Фотопровідність:

(ф = q((n(n + (p(p)

При h( ( Eg концентрація незрівноважених електронів і дирок пропорційна швидкості оптичної генерації, тобто g = a((()Nф, де Nф – потік фотонів,
((() – квантовий вихід фотоіонізації (кількість електронно-діркових пар, утворених одним квантом світла).

Підсилення фотоструму. В однорідному напівпровіднику фотострум:

Iф = qGKф, де G – повна генерація; Kф = (n / tn + (p / tp – коефіцієнт підсилення; tn
,tp – часи прольоту електронів і дірок між електродами при довжині зразка d і прикладеній напрузі U: tn = d2 / ((n U), tp=d2/((p U)

В результаті:

Kф = ((n / tn + (p / tp)U / d2

Iф = qG((n / tn + (p / tp)U / d2

Фізичний зміст коефіцієнта підсилення полягає в тому, що, утворена світлом незрівноважена провідність в напівпровіднику зберігається до того часу, поки не рекомбінуються в об’ємі чи не вийдуть з нього через контакти в зовнішній ланцюг залишкові носії. Оскільки електрони і дірки мають різні рухливості, то при досить великих напругах електричного поля (коли час прольоту електрона через зразок буде менший часу життя) за час до рекомбінації електронно-діркової пари від контакту до контакту пройде електронів більше, ніж один. Якщо час життя і рухливість не залежать від поля, то фотострум повинен лінійно зростати зі збільшенням прикладеної напруги чи зменшенням відстані між контактами. Така залежність буде зберігатись доти, поки час прольоту дірок не зменшиться до часу життя.
Після цього фотострум перестає зростати, так як ефективний час життя незрівноваженої електронно-діркової пари починає спадати пропорційно до прикладеного електричного поля, що компенсує збільшення швидкості їх руху.
В цій області зміщень швидкодія збільшується. Нелінійна залежність фотоструму може бути зв’язана з виникненням об’ємного заряду в напівпровіднику з залежністю від електричного поля рухливості і часу життя носіїв внаслідок їх “розігріву”, тобто збільшення швидкості вище теплової при даній температурі.

Для власного поглинання в області малих зміщень при рівномірній по об’єму генерації електронно-діркових пар зміна незрівноваженої провідності визначається рівнянням: d(ф / dt = q((n + (p)G - (ф / (ф, де (ф = ((n(n + (p(p)( (n(n / (n + (p(p / (p)-1

Це є час релаксації фотопровідності (час життя незрівноваженої провідності) і визначає темп затухання незрівноваженої провідності (ф.

В стаціонарному стані (d(ф / dt = 0) фотопровідність:

(Фст = q((n + (p)G(ф

Видно, що чим вище (ф, тим більша фотопровідність, але і більший час встановлення стаціонарного стану, тобто більша інерційність фотоприйомного приладу і менша полоса пропускання (f. Якість фотоприймача оцінюється його добротністю

Q = Kф(f

Для кожного типу фотоприймача з лінійним механізмом підсилення фотоструму його добротність є величина постійна .Виграш в коефіцієнті підсилення супроводжується пропорційним зменшенням полоси пропускання і навпаки.

ХАРАКТЕРИСТИКИ І ПАРАМЕТРИ ФОТОПРИЙМАЧІВ

ХАРАКТЕРИСТИКИ ФОТОПРИЙМАЧІВ

Фотоприймачі є приладами, що реагують на потік випромінювання.

Вольт-амперна характеристика відображає залежність струму, що проходить у ланцюзі фотоприймача, від напруги на ньому. Світловий (загальний) струм I
= IТ + IФ де ІТ - струм за відсутності освітлення; IФ – фотострум.

Спектральна характеристика визначає реакцію фотоприймача на вплив випромінювання з різноманітною довжиною хвилі. Вона визначає спектральну область застосування приймача, а також його спектральну й інтегральну чутливості. Енергетична (світлова) характеристика відображає залежність фотовіддачі від інтенсивності збуджуючого потоку випромінювання (ампер- ватна, вольт-ватна, люкс-амперна характеристики).

Енергетичною характеристикою називають також залежність інтегральної або спектральної чутливості приймача від інтенсивності засвітки.

Температурні характеристики визначають залежність ряду параметрів
(темновий струм, темновий опір, чутливість і ін.) від температури навколишнього середовища. При цьому обумовлюються значення основних параметрів у крайніх точках робочого діапазону при робочій напрузі живлення фотоприймача. Температурний коефіцієнт фотоструму (ТК) визначається відношенням

ТК = [(І2 - І1) / І1(Т2 - Т1)]100%, де І1 і І2 – світловий струм при температурі Т1 і Т2 відповідно.

Граничні характеристики описують здатність фотоприймача реагувати на світлові сигнали слабкої інтенсивності. У значній мірі ці характеристики визначаються власними шумами приладу, що є флуктуацією струму, що проходить через нього за відсутності засвітки або при впливі немодульованого світлового потоку.

Тепловий шум є білим і виявляється у вигляді безладних коливань на виводах фотоприймача. Напругу цього шуму можна зменшити навантаженням приймача узгодженим опором. До складу струмового (1/f), або надлишкового, шуму входять модуляційний і контактний шуми. Іноді (при частотах f[pic]1/2[pic]до цього типу шумів відносять і генераційно-рекомбінаційний шум.

Радіаційний шум обумовлений випадковими флуктуаціями потоку випромінювання. Спектр потужності радіаційного (фотонного) шуму має постійну амплітуду, що слабко залежить від частоти.

Важливими властивостями фотоприймачів є стабільність – спроможність зберігати фотоелектричні параметри у визначених межах протягом заданого часу - і довговічність - спроможність тривалої роботи у визначеному режимі за умови зберігання фотоелектричних параметрів у межах норм. Як правило, в якості критеріїв оцінки стабільності і довговічності виступають темновой струм і чутливість (для фотодіодів) і темновий опір (для фоторезисторів).
Довговічність характеризує безупинний режим роботи приладу протягом зазначеного часу в певних умовах.

Умови роботи пристроїв, у яких застосовуються фотоприймачі, дуже часто відрізняються від нормальних. Прилади при цьому піддаються різноманітного роду механічним і кліматичним впливам (вібрація, удари, трясіння, наявність підвищеної вологості і лінійні прискорення). Працездатність фотоприймачів у різноманітних умовах забезпечується рядом технологічних і конструктивних заходів.

Частотні характеристики визначають залежність фоточутливості від частоти модуляції світла. Вони є характеристикою інерційності фотоприймача.

ПАРАМЕТРИ ФОТОПРИЙМАЧІВ

Робоча напруга фотоприймача Up - постійна напруга, прикладена до фотоприймача, при якому забезпечуються номінальні параметри при тривалій роботі в заданих експлуатаційних умовах. Його вибирають із запасом відносно пробивної напруги.

Максимально допустима напруга Umax – максимальне значення постійної напруги, при якому відхилення параметрів приладу від номінальних значень не перевищує встановлених меж. При роботі в імпульсному режимі Umax може бути збільшене.

Потужність розсіювання, що виділяється при проходженні фотоструму, визначає розігрів фотоприймача. Велика потужність, що розсіюється, може призвести до необоротної зміни струмів Іт і Iф. Кожний приймач характеризується визначеним значенням максимальної потужності розсіювання
Рдоп, що не повинне перевищуватися. Значення Рдоп залежить від умов тепловідводу, розмірів робочої площадки й інших чинників.

Темновий опір Rт – опір фотоприймача за відсутності падаючого на нього випромінювання в діапазоні його спектральної чутливості.

Диференціальний опір Rд – відношення малих приростів напруги і току па фотоприймачі.

Темновий струм фотоприймача Іт - струм, що проходить через фотоприймач при зазначеній напрузі на ньому за відсутності потоку випромінювання в діапазоні спектральної чутливості.

Короткохвильова (довгохвильова) межа спектральної чутливості – найменша
(найбільша) довжина хвилі монохроматичного випромінювання, при якому монохроматична чутливість фотоприймача дорівнює 0,1 її максимального значення.

Динамічний діапазон лінійності (у децибелах) характеризує область значень променистого потоку Ф (від Фmах до Фmin), для котрої енергетична характеристика лінійна: ([pic]=101g(Фmах/Фmin).

Максимум спектральної характеристики фотоприймача – довжина хвилі, що відповідає максимуму чутливості фотоприймача. Положення максимуму залежить від об'ємного часу життя незрівноважених носіїв, швидкості поверхневої рекомбінації, геометричних розмірів світлочутливої площадки й інших чинників.

Струмова фоточутливість Si (А/лк або в А/Вт) визначає значення фотоструму, утворюваного одиничним потоком випромінювання. Нерідко замість потоку випромінювання, що падає на фотоприймач, задається щільність падаючого потоку, що вимірюється у Вт/м2.

Вольтова фоточутливість Su характеризує значення сигналу у вольтах, віднесене до одиниці падаючого потоку випромінювання.

Струмова і вольтова чутливості називаються інтегральними, якщо вони характеризують чутливість до інтегрального потоку випромінювання і монохроматичними, якщо характеризують фоточутливість до монохроматичного випромінювання. Звичайно фотоприймачі описують або інтегральною фоточутливістю, або фоточутливістю в максимумі випромінювання (Si[pic]max,
S Si[pic]min ) із вказанням довжин хвиль, при яких чутливість зменшується вдвічі.

Інтегральні струмову і вольтову чутливості Sі і Su обчислюють за формулами:

Si = [pic], Su = [pic] де І, U і Iт, Uт - загальні і темнові струм і напруга на фотоприймачі відповідно.

Гранична чутливість Рпор визначає рівень потужності світлового потоку, при якому сигнал дорівнює шуму.

Інерційність фотоприймачів характеризується постійними часу фронту наростання [pic]н і спаду [pic]сп фотовідповіді при імпульсній засвітці.
Ними визначаються граничні робочі частоти модуляції світла, при котрих ще не відбувається помітного зменшення фотовідповіді. Як правило, [pic]н nn має вигляд:

Інас = gSLppn / [pic]p.

Це cтрум незрівноважених носіїв заряду, що генеруються з темпом pn/[pic]p в шарі бази шириною, рівною довжині дифузії неосновних носіїв
(дірок) Lp. За аналогією фотострум

Іф = qS([pic]р / [pic]p)[pic], де [pic]p – концентрація генерованих світлом носіїв. Оскільки [pic] gкр, провідність бази істотно зростає і суттєвим стає падіння напруги на p-n-переході. Напруга при цьому слабко залежить від інтенсивності засвітки, а струм зриву помітно збільшується з ростом g .

Зневажаючи падінням напруги на p-n-переході, коефіцієнт підсилення можна записати у вигляді: Kіп = Ізр0 / (Ізр0 - І) де Ізр0 – щільність cтруму зриву за відсутності освітлення. Поблизу точки зриву Kg = 2, Kj =
0,5 Ізр0 / (Ізр0 - І). При І > Ізр0 підсилення може бути дуже великим.

Інжекційне підсилення при примісній засвітці. Існує принципове розходження при впливі власної і примісної засвіток на фізичні процеси в діодах із довгою базою на основі високоомних компенсованих напівпровідників. Аналіз загального рівняння біполярного переносу показує, що параметри, які визначають розподіл незрівноважених носіїв у базі
(біполярна рухливість (, біполярний коефіцієнт дифузії D і ін.), явно залежать лише від характеру примісної засвітки і концентрації неосновних носіїв. “Параметричне” інжекційне підсилення при дії світла, слабкого за інтенсивністю, реалізується навіть за відсутності будь-якого помітного перезарядження глибоких центрів.

Дрейфове наближення переносу носіїв справедливе, якщо довжина бази діода більш ніж на порядок перевищує довжину дифузійного зсуву. Примісна засвітка збільшує ( і тим самим сприяє зростанню глибини протягання інжектованих носіїв вглиб бази за допомогою дрейфу в електричному полі.

На порівняно пологій ділянці ВАХ примісний фотострум ІФД, як і темновий струм, описується квадратичною залежністю струму від напруги (І ~
U2), для еквівалентного фоторезистора ця залежність лінійна (мал. 2.2).
Компонента коефіцієнта інжекційного підсилення Кj ( 2. Повний коефіцієнт інжекційного посилення Кіп ~ [pic], тому що Кіп ~ U. При досить великих напругах значення Кіп може бути дуже великим (102 і більше). Чинниками, що обмежують коефіцієнт підсилення зверху, є різні механізми інжекційного пробою.

Мал. 2.2. Струмова фоточутливість Si(U) BAX ІФД з

Ge (криві 1 і 3) і аналогічного фоторезистора

(криві 2,4) при примісній засвітці (Т = 77К)

Фотоелектричне підсилення в повному вигляді можна висловити рівністю:

Kф ? 2 [pic] [pic], де tp і tn – часи прольоту дірок і електронів через базу; (p/tp – коефіцієнт підсилення еквівалентного фоторезистора (матеріал бази діода – напівпровідник p-типу); відношення (n/tn відображає інжекційне підсилення діода стосовно чутливості фоторезистора.

Розігрів носіїв електричним полем може призводити до появи на ВАХ діода ділянки постійної напруги (вертикаль). При цьому стаціонарний примісний фотострум настільки сильно зростає, що виникає його додаткове (в порівнянні з випадком відсутності польового розігріву) інжекційне підсилення, що може складати декілька порядків. У цьому випадку в умовах інжекційного пробою напівпровідника, коли відбувається різке збільшення фоточутливості, при модуляції примісного світла частота спаду фотоструму обернено пропорційна сталому струмові і істотно залежить від відношення часу життя носіїв.

Поглинання світла інжектованими носіями в p-i-n-структурах також супроводжується інжекційним підсиленням. Падаюче випромінювання за рахунок світлового розігріву носіїв змінює параметри Dn, Dр, (n, (p, (n, (p.
Підсилення фотоструму при цьому може досягати декількох порядків.

Фотодіоди з інжекційним підсиленням перспективні для створення високоефективних фотоелектричних пристроїв, чутливих практично у всіх областях оптичного спектру. ІФД відрізняються гарними граничними характеристиками. Використання їх можливе як в аналоговому, так і в дискретному режимах.

Кількість матеріалів, у яких спостерігалося інжекційне підсилення, дуже велика. Це, наприклад, германій, компенсований Au, Hg, Сu і ін., кремній що має глибокі рівні Zn, В і ін. Інжекційне підсилення вивчалося в діодах на основі бінарних з'єднань і твердих розчинів. В залежності від ширини забороненої зони напівпровідника і глибини залягання домішок ІФД можуть працювати як при кімнатній, так і при більш низьких температурах.

Значна частина досліджень проведена для ІФД, чутливих у ІЧ області спектру (наприклад, діоди на основі Ge, InSb). Проте виявлені закономірності інжекційного підсилення в основних рисах поширюються і на діоди на основі широкозонних матеріалів, чутливі в більш короткохвильовій області спектру.

Фотоприймачі з інжекційним підсиленням перспективні для використання у функціональних вузлах мікроелектронної апаратури (S-діоди), в пристроях криоелектроніки. Чутливістю інжекційних фотоприймачів можна керувати, використовуючи спільну дію світла і магнітного поля. Фоточутливість можна підвищити, створюючи в базі градієнт концентрації домішок або роблячи ІФД складовою частиною біполярного або одноперехідного транзистора.

Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.