Меню
Поиск



рефераты скачать Физика, основы теории


.


Мгновенная мощность определяется по формуле . Учитывая, что , получаем , где v – мгновенная скорость.

За единицу мощности в системе СИ принимают ватт (Вт).

На практике часто применяют внесистемную единицу мощности – лошадиную силу.

1 л.с. = 735 Вт


10. Кинетическая и потенциальная энергия

Физическая величина, характеризующая способность тела или системы тел совершать работу, называется энергией.

Энергия может быть обусловлена движением тела с некоторой скоростью (кинетическая энергия), а также нахождением тела в потенциальном поле сил (потенциальная энергия).

Кинетическая энергия

Рассмотрим случай, когда тело массой m под действием силы F изменяет свою скорость от  до . Определим работу силы, приложенной к телу


.

.


Так как механическая работа является мерой изменения энергии, то величина  представляет собой энергию, обусловленную движением тела.

Энергию, которой обладает тело вследствие своего движения называют кинетической .

Работа совершаемая силой при изменении скорости тела, равна изменению кинетической энергии тела


Потенциальная энергия тела в поле силы тяжести

При падении тела массой m с высоты до высоты  над Землей сила тяжести совершает работу


 или .


Сила тяжести является консервативной силой, а поле тяготения – потенциальным. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком


.


Потенциальная энергия тела в поле силы тяжести .

Энергия, которая определяется взаимным расположением тел или частей одного и того же тела называется потенциальной.


11. Закон сохранения полной механической энергии


Рассмотрим движение тела в замкнутой системе, в которой действуют только консервативные силы. Пусть, например, тело массой m свободно падает. При переходе тела из состояния 1 в состояние 2 сила тяжести совершает работу


.


В то же время . Следовательно, . Преобразовав данное выражение, получим .

Сумма кинетической и потенциальной энергии тела называется полной механической энергией тела.



Согласно закону сохранения полной механической энергии: полная механическая энергия замкнутой системы тел, взаимодействующих друг с другом только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии в кинетическую и обратно.

Системы, в которых сохраняется полная механическая энергия, называются консервативными.

Системы, в которых полная механическая энергия не сохраняется называются диссипативными (диссипация – переход энергии в другой вид, например, механической во внутреннюю).

В общем случае закон сохранения энергии в природе формулируется следующим образом:

Энергия тел никогда не исчезает и не появляется вновь: она лишь превращается из одного вида в другой или переходит от одного тела к другому.

12. Основные положения молекулярно-кинетической теории и их опытное обоснование. Масса и размеры молекул


Теорию, объясняющую строение и свойства тел на основе закономерностей движения и взаимодействия частиц, из которых состоят тела, называют молекулярно-кинетической.

Основные положения молекулярно-кинетической теории (МКТ) формулируются следующим образом:

1.                 Любое вещество имеет дискретное (прерывистое) строение. Оно состоит из отдельных частиц (молекул, атомов, ионов), разделенных промежутками.

2.                 Частицы находятся в состоянии непрерывного хаотического движения, называемого тепловым.

3.                 Частицы взаимодействуют друг с другом. В процессе их взаимодействия возникают силы притяжения и отталкивания.

Справедливость МКТ подтверждается многочисленными наблюдениями и фактами.

Наличие у веществ проницаемости, сжимаемости и растворимости свидетельствует о том, что они не сплошные, а состоят из отдельных, разделенных промежутками частиц. С помощью современных методов исследования (электронные и ионные микроскопы) получены изображения наиболее крупных молекул.

Броуновское движение и диффузия свидетельствуют о том, что частицы находятся в непрерывном движении.

Наличие прочности и упругости тел, явления смачивания, поверхностного натяжения в жидкостях и т.д. доказывают существование сил взаимодействия между молекулами.

Масса и размеры молекул.

Размер молекул является величиной условной. Его оценивают следующим образом. Между молекулами наряду с силами притяжения действуют и силы отталкивания, поэтому молекулы могут сближаться лишь до некоторого расстояния. Расстояние предельного сближения центров молекул называют эффективным диаметром молекулы. (При этом условно считают, что молекулы имеют сферическую форму.)

С помощью многочисленных методов определения масс и размеров молекул установлено, что за исключением молекул органических веществ, содержащих очень большое число атомов, большинство молекул по порядку величины имеют диаметр 1· 10 - 10 м и массу 1· 10 - 26 кг.

Относительная молекулярная масса.

Относительной молекулярной (или атомной) массой Мr (или Аr) называют величину, равную отношению массы молекулы (или атома) mо этого вещества к 1/12 массы атома углерода mоС, т.е.



Относительная молекулярная (атомная) масса является величиной, не имеющей размерности.

Количество вещества. Молярная масса. Масса молекулы.

Количеством вещества ν называют величину, равную отношению числа молекул (или атомов) N в данном теле к числу атомов NA в 0,012 кг углерода, т.е. ν = N/ NA (NA - число Авогадро).

Молярной массой М какого-либо вещества называют массу 1 моль этого вещества.


М = mо NA


Следовательно, массу молекулы (атома) можно определить из соотношения


mо = М / NA



13. Идеальный газ. Основное уравнение МКТ идеального газа


Идеальным называют такой газ, при описании свойств которого делают следующие допущения: не учитывают собственный размер газовых молекул и не учитывают силы взаимодействия между ними.

Таким образом, моделью идеального газа является совокупность хаотически движущихся материальных точек, взаимодействующих между собой и со стенками содержащего газ сосуда только при непосредственном столкновении.

Основное уравнение МКТ идеального газа устанавливает зависимость между параметрами молекул и давлением. Давление газа возникает вследствие столкновений молекул со стенками сосуда, в котором находится газ.

Давление идеального газа

m0 – масса молекулы; n – концентрация молекул, - квадрат средней квадратичной скорости молекул.


=


Формулу основного уравнения МКТ идеального газа можно представить в виде


,

где  - средняя кинетическая энергия поступательного движения молекул.


 

14. Абсолютная температура и её физический смысл

Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона)

Под понятием «температура» подразумевают степень нагретости тела.

Существует несколько температурных шкал. В абсолютной (термодинамической) шкале температура измеряется в кельвинах (К). Нуль в этой шкале называют абсолютным нулем температуры, приблизительно равен - 2730С. при абсолютном нуле прекращается поступательное движение молекул.

Термодинамическая температура Т связана с температурой по шкале Цельсия следующим соотношением:

Т = (t0 + 273)K


Для идеального газа существует пропорциональная зависимость между абсолютной температурой газа и средней кинетической энергией поступательного движения молекул:

,


где k – постоянная Больцмана, k = 1,38· 10 – 23 Дж/К

Таким образом, абсолютная температура является мерой средней кинетической энергии поступательного движения молекул. В этом заключается её физический смысл.

Подставляя в уравнение p = n выражение для средней кинетической энергии

= kT, получим

p = n ·  kT = nkT


Из основного уравнения МКТ идеального газа p = nkT при подстановке


,


можно получить уравнение


, или A · kT

NA· k = R - универсальная газовая постоянная, R = 8,31

Уравнение  называют уравнением состояния идеального газа (уравнением Менделеева-Клапейрона).

15. Газовые законы. Графики изопроцессов.

1.                 Изотермический процесс (Т = const) подчиняется закону Бойля – Мариотта: для данной массы газа при постоянной температуре произведение давления на объём есть величина постоянная.


, или , или


 P






0 V

 Изотерма идеального газа в координатных осях P,V представлена на графике.

2.                 Изобарный процесс (р = const) подчиняется закону Гей-Люссака: для данной массы газа при постоянном давлении отношение объема газа к абсолютной температуре есть величина постоянная.

, или , или

 V






0 T

 Изобара идеального газа в координатных осях V, T представлена на графике.



3.                 Изохорный процесс (V = const) подчиняется закону Шарля: для данной массы газа при постоянном объеме отношение давления газа к абсолютной температуре есть величина постоянная.


, или  или

P






0 T

 Изохора идеального газа в координатных осях P, T изображена на графике.

Внутренняя энергия идеального газа. Способы изменения внутренней энергии.

Количество теплоты. Работа в термодинамике

Внутренней энергией называют сумму кинетической энергии хаотического движения молекул и потенциальной энергии их взаимодействия.

Так как молекулы идеального газа не взаимодействуют друг с другом, то внутренняя энергия U идеального газа равна сумме кинетических энергий хаотически движущихся молекул:


, где .


Таким образом,

,


где .

Для одноатомного газа i = 3, для двухатомного i = 5, для трех (и более)атомного i = 6.

Изменение внутренней энергии идеального газа


.


Внутренняя энергия идеального газа является функцией его состояния. Внутреннюю энергию можно изменить двумя способами:

·                    путем теплообмена;

·                    путем совершения работы.

Процесс изменения внутренней энергии системы без совершения механической работы называют теплообменом или теплопередачей. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Количеством теплоты называют величину, являющуюся количественной мерой изменения внутренней энергии тела в процессе теплопередачи.

Количество теплоты, необходимое для нагревания (или отдаваемое телом при охлаждении) определяется по формуле:


 где с – удельная теплоемкость вещества

 

Работа в термодинамике

Элементарная работа d A = p dV. При p = const

 

16. Состояние системы. Процесс. Первый закон (первое начало) термодинамики


Системой тел называют совокупность рассматриваемых тел. Примером системы может быть жидкость и находящийся в равновесии с ней пар. В частности, система может состоять из одного тела.

Всякая система может находиться в различных состояниях, отличающихся температурой, давлением, объемом и т.д. Величины, характеризующие состояние системы, называют параметрами состояний.

Не всегда какой-либо параметр системы имеет определенное значение. Если, например, температура в разных точках тела неодинакова, то телу нельзя приписать определенное значение температуры. В этом случае состояние системы называют неравновесным.

Равновесным состоянием системы называют такое состояние, при котором все параметры системы имеют определенные значения, остающиеся при неизменных внешних условиях постоянными сколь угодно долго.

Процессом называют переход системы из одного состояния в другое.

Внутренняя энергия является функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Изменение внутренней энергии системы при её переходе из одного состояния в другое (независимо от пути, по которому совершается переход) равно разности значений внутренней энергии в этих состояниях.

Согласно первому началу термодинамики количество теплоты, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

Применение первого закона термодинамики к процессам в газах. Адиабатный процесс.

1.                 Изотермический процесс (Т=const)


, т.к. .


Работа газа в изотермическом процессе


.


2.                 Изохорный процесс (V=const)


, так как  Следовательно

3.                 Изобарный процесс (p=const)

.


4.                 Адиабатный процесс (Q = 0).

Адиабатным называют процесс, протекающий без теплообмена с окружающей средой.

Уравнение адиабаты (уравнение Пуассона) имеет вид .

В соответствии с первым законом термодинамики  Следовательно, .

При адиабатном расширении , поэтому  (газ охлаждается).

При адиабатном сжатии , поэтому (газ нагревается). Адиабатное сжатие воздуха применяют для воспламенения топлива в дизельных ДВС.


17. Тепловые двигатели

Под тепловым двигателем понимают устройство, преобразующее энергию сгоревшего топлива в механическую энергию. Тепловой двигатель, у которого рабочие части периодически возвращаются в исходное положение, называют периодическим тепловым двигателем.

К тепловым двигателям относятся:

·                    паровые машины,

·                    двигатели внутреннего сгорания (ДВС),

·                    реактивные двигатели,

·                    паровые и газовые турбины,

·                    холодильные машины.

Для работы периодического теплового двигателя необходимо выполнение следующих условий:

·                    наличие рабочего тела (пара или газа), которое, нагреваясь при сгорании топлива и расширяясь, способно совершить механическую работу;

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.