Меню
Поиск



рефераты скачать Физика нейтрино

p> Вместе с тем было обращено внимание на то, что часть процессов, ко- торые, казалось бы, не нарушали никаких законов сохранения, не наблю- дались. Так, для [pic] - мезона энергетически возможно несколько схем распада:

[pic]+ [pic] е+ + [pic] +
[pic] , (7)

[pic]+ [pic] е+
+[pic], (8)

[pic]+ [pic] е+ + е+ + е-

(9)

Осуществлялась же только одна - первая. Теория не находила удав- летворительного объяснения этому факту. Ведь процесс (8) можно предс- тавить себе как некое продолжение процесса (7). При этом [pic] и [pic] исчезают - аннигилирую в момент своего рождения, как частица и античастица, а вылетающий позитрон излучает [pic]- квант. Расчетная вероятность W- распада [pic]+ [pic] е+ + [pic] по отношению к распаду [pic]+[pic] е+ +
[pic] + [pic] составляет 10-3 - 10-4, но запретов на его существование нет.

Тем не менее, поиски процесса (8) не привели к положительным ре- зультатам. Со временем ограничение на вероятность все уменьшались: меньше 10-4, меньше 10-5, 10-7, 10-10 (1979 г.). Природа препятствовала мюонну распадаться на электрон и [pic]- квант, запрещала аннигилировать
[pic] и [pic]. Попытки объяснить запрет реакций (8) и (9) привели к идее о существовании двух типов нейтрино. Одно сопутствует электрону - электронное нейтрино [pic]е, другое - мюону, мюонное нейтрино [pic][pic]. В распаде нейтрона и [pic]-мезона возникают разные нейтрино n [pic] p + e- +[pic]е[pic],

- 29 -

[pic]- [pic] [pic]- + [pic][pic],

а реакцию распада[pic]-мезона следует писать в виде:

[pic]+ [pic] е+ +
[pic][pic] + [pic]е .

Гипотеза должна была быть проверена экспериментом.

Опыт по изучению различия (или единства) [pic][pic] и [pic]е был первым нейтринным экспериментом поставленным на ускорителях высоких энергий. Осуществить его предлагали несколько ученых - Б.М. Понтекорво,
М.А. Марков, М. Шварц. Выполнен этот эксперимент был впервые на Брукхей- венском ускорителе (США) и через год в ЦЕРНе (Европейский центр ядерных исследований).

Идея опыта заключалась в следующем. Пучок протонов, разогнанных в ускорителе, в определенный момент отклонялся мощным импульсом магнит- ного поля. Он выходил из камеры ускорителя и попадал на мишень, в ко- торой при взаимодействии протонов с веществом рождались быстрые [pic] - и К - мезоны. Вылетев из мишени и распадаясь на лету в специальном про- летном туннеле, мезоны излучали нейтрино и мюоны высоких энергий. Дальше пучок попадал в слой стали общей толщиной около 13 м, где практически поглощались все сильно взаимодействующие частицы ([pic]-, К-, [pic]-мезоны и т.п.).

Мезоны, остановившиеся в защите, тоже излучали при распаде нейтрино. Среди них и электронные, например при распаде мюонов. Но эти нейтроны обладали существенно меньшей энергией, чем родившиеся на лету, и не играли роли для проводившегося эксперимента. Если существуют два сорта нейтрино, [pic][pic] и [pic]е , то ускоритель - практический чистый источник [pic][pic].

Пучок нейтрино попадал в детектор, где во взаимодействиях с веществом могли рождаться электроны и мюоны. Если электронные и мюоные нейтрино неразличимы, то число зарегистрированных электронов и мюонов должно было быть одинаковым. Но в опытах регистрировались практически одни мюоны, и это служило прямым доказательством различия [pic][pic] и
[pic]е. Чуть позже эксперименты, поставленные на ускорителях, позволили доказать

- 30 -

различие и нейтрино, сопровождающих [pic]+ и [pic]- -мезоны, то есть различие мюонных антинейтрино и нейтрино.

В 1975 году в связи с открытием третьего заряженного лептона -
[pic]-лептона было введено еще одно нейтрино [pic]-нейтрино. Рождается
[pic]-нейтрино в распадах [pic]- лептона:

[pic]-[pic] [pic][pic] + [pic]- ,

[pic]-[pic] [pic][pic] + [pic][pic] + е- ,

а также в распадах мезонов, более тяжелых, чем [pic]-лептон.

Нейтрино во всех взаимодействиях с другими частицами в свою очередь рождают заряженные лептоны только своего типа; с хорошей точностью это проверено для мюонных нейтрино, наблюдаются процессы типа:

[pic][pic] + n [pic] [pic]- + p,

[pic][pic] + p [pic] [pic]+ + n

(Брукхейвен, 1962; ЦЕРН, 1964).

Все семейство нейтрино состоящее из электронного, мюонного, таонного нейтрино и соответствующих антинейтрино относится к классу лептонов.
Класс лептонов (от греческого "мелкий, легкий") включает также электрон, позитрон и мюоны обоих знаков. Заряженные лептоны участвуют в электромагнитном и слабом взаимодействиях, нейтрино - только в слабом.

Для частиц, входящих в класс лептонов, введено правило, получившее название закона сохранения лептонного заряда (основополагающие работы принадлежат Я.Б. Зельдовичу, Е. Конопинскому и Х. Махмуду). Различие между тремя типами нейтрино описывается тремя сохраняющимися (или приближенно сохраняющимся) лептонными зарядами: электронным le, мюон- ным l[pic] и таонным l[pic].

- 31 -

[pic]е [pic]e е- e+ [pic][pic]
[pic][pic] [pic]+ [pic]- [pic][pic] [pic][pic][pic][pic]
[pic]- [pic]+ le, 1 -1 1 -1 0 0 0

0 0 0 0 0

l[pic] 0 0 0 0 1 -1 1

-1 0 0 0 0

l[pic] 0 0 0 0 0 0
0 0 1 -1 1 -1

Для фотонов и адронов значения всех лептонных зарядов равны
0.Считается, что во всех процессах сохраняется неизменной сумма лептонных зарядов. Например:

n [pic] p + e- +[pic]е[pic], (le, = 0 - 0 + 1 - 1).

Процессы распада мюона на позитрон и [pic]- квант (8) или на электрон и два позитрона (9) запрещены новым законом. В этом смысле он подобен закону сохранения электрического заряда. Однако между двумя зарядами, электрическим и лептонным есть существенное отличие: первый определяет степень участия частицы в электромагнитных процессах, второй с взаимодействием лептонов непосредственно не связан.

Внутри одной группы частиц разные лептонные заряды соответствуют дираковскому подходу - частица и анитичастича отличаются знаком лептонного заряда, и в реакциях их нельзя заменять одну другой. Введение лептонных зарядов запрещает например, замену [pic]е на [pic][pic], т.е. переходы между двумя группами лептонов. Однако существуют теоретические обоснования для гипотезы о том, что закон сохранения лептонного заряда является приближенным и, в частности, возможны взаимные переходы различных типов нейтрино друг в друга - нейтринных осцилляций.

Впервые об осцилляциях говорилось в работах Б.М. Понтекорво в 1957
- 1958 гг., но идея была встречена без особого энтузиазма. Со временем положение изменилось с открытием массы нейтрино и парадоксом солнечных нейтрино, который будет рассмотрен ниже. Различные эксперименты, проведенные для подтверждения или опровержения этого факта, дают пока противоречивые результаты, от существования осцилляций (группа физиков работавших во Франции, в Буже), до их отсутствия (группа Р. Мессбауэра).
Ответ на этот вопрос - дело ближайшего будущего.

В заключение важно отметить, что вопрос о числе типов нейтрино остается открытым. Возможно, будут открыты еще и другие типы нейтрино.

- 32 -

Как уже отмечалось, нейтрино участвует только в электрослабом взаи-действии. В 1979 г. три физика-теоретика С. Вайнберг, А. Салам и
Ш.Л. Глэшоу - были удостоены Нобелевской премии за создание единой теории электромагнитных и слабых взаимодействий.

- 33 -

5. ДВОЙНОЙ [pic] - РАСПАД.

Еще одним интереснейшим процессом, связанным с нейтрино, является двойной [pic] - распад. Существование двойного [pic] - распада было предсказано чуть позже (1935 г.), чем существование нейтрино.
Интерес к нему то почти совсем затухал, то вспыхивал с новой силой.
Сейчас мы проходим через очередной максимум. Около десяти групп в различных странах мира заняты поисками двойного [pic] - распада.

При обычном [pic] - распаде в ядре A (Z,N) один нейтрон превращается в протон, ядро переходит в A (Z+1, N-1), испуская электрон и антинейтрино.

В достаточно редких случаях оказывается энергетически выгоден двойной [pic] - распад. При нем переход выглядит следующим образом: A (Z,N) [pic] A (Z+2, N-
2). Он происходит непосредственно между этими ядрами, если энергия промежуточного ядра А (Z+1, N-1) выше, чем у A (Z, N) (рис 4).

Рис. 4. Энергетические уровни трех ядер. Ядро Z, N способно испытывать двойной [pic]- распад.

Из ядра, вылетают сразу два электрона. Встает вопрос: вылетают ли при этом антинейтрино.

Действительно, превращение двух нейтронов в два протона может про- исходить независимо:

- 34 -

n [pic] p + e- + [pic]e

n [pic] p + е- + [pic]e двухнейтринный

двойной [pic] - распад

2n [pic]2p + 2e- +2[pic]e

А (Z,N) [pic] A (Z+2, N-2) + 2e- + 2[pic]e

Если же предположить, что [pic]e тождественно [pic]е , то этот процесс может идти независимо. Нейтрино, испускаемое при распаде одного нейтрона, индуцирует распад второго:

n [pic] p + e- + [pic]e

n + [pic]е [pic] p + е-

Безнейтринный двойной

[pic]- распад

2n [pic] 2p + 2e-

A (Z, N) [pic] A (Z+2, N-2) + 2e-

Очевидно, что в безнейтринном двойном [pic] - распаде нарушается закон охранения лептонного заряда, и он может происходить только при неполной поляризации нейтрино. А неполная поляризация связана с конечной массой. Обнаружение этого процесса принесло бы очень интересные результаты, поэтому так много сил было затрачено на его поиски.

Сопоставляя между собой реакции, можно увидеть, как в экспериментах отличить двухнейтринный [pic]- распад от безнейтринного. В последнем случае суммарная энергия электронов будет всегда постоянной - она определяется только разностью энергий основных состояний ядер A (Z,N) и A
(Z+2, N-2). А в первом случае электроны обладают непрерывным спектром энергий, поскольку излучаются еще и два антинейтрино.

Если лептонный заряд сохраняется, то безнейтринный распад запрещен, а вот если [pic]е и [pic]e тождественны, то теория предсказывает, что этот тип распада должен происходить с существенно большей вероятностью, чем двухнейтринный.

Опыты Дэвиса и другие эксперименты говорят о том, что сильного нарушения закона сохранения лептонного заряда и значительной деполяризации нейтрино ожидать нельзя. Можно надеяться обнаружить

- 35 -

только слабый эффект. Соответственно этому безнейтринный двойной[pic]
-распад сильно заторможен по сравнению со случаем тождества электронных нейтрино и антинейтрино, и вероятность его может стать равной или меньшей, чем вероятность двухнейтринного процесса (который идет всегда, когда это энергетически возможно).

Сейчас экспериментаторы пытаются обнаружить безнейтринный процесс, идущий со временем жизни 1021 - 1022 лет. (В области Т1/2< 1021 лет его уже не обнаружили.) А это значит, что в 1 грамме исходного вещества может происходить 1 распад за несколько лет. Как зарегистрировать такие активности?

Есть два способа, принципиально отличающиеся друг от друга. Пер- вый, косвенный, носит название геологического. В нем исходным матери- алом является минерал, содержащий изотоп, способный претерпевать 2[pic]- распад (Z,N). Физикам необходимо обнаружить в этом минерале атомы продукта распада (Z+2, N-2), накопившиеся там за миллиарды лет. Чтобы это сделать, надо, чтобы дочернее вещество возможно легче отделялось от материнского.
Такому требованию удовлетворяют инертные газы, поэтому в геологических экспериментах исследовались переходы 128Te [pic] 128Xe, 130Te [pic]
130Xe, 82Se [pic] 82Kr.

Расскажем об одном из опытов, которые провела группа Т. Кирстена
(США). Они взяли образцы теллуровой руды из глубинной шахты в Колорадо, чтобы иметь дело с веществом, подвергшимся как можно меньшему воздействию космических лучей. Затем несколькими методами определило и возраст образца.

Он оказался равным около 1,3 млрд. лет. Следующий шаг - измельчение образца, выделение из него газов и исследование их на масс спектрографе. При определении изотопного состава Xe выяснилось, что содержание изотопа 130Xe в десятки раз превышает обычное его содержание для атмосферного ксенона. Авторы рассмотрели все возможные процессы и реакции, которые могли бы привести к аномальному повышению концентрации
130Xe, и пришли к выводу, что, единственным разумным объяснением его избытка, остается 2[pic]-распад. Проанализировав возможные потери газа за период существования образца, они определили период полураспада теллура-130: Т1/2 130Te = (2,60[pic]0,28)*1021 лет. Другие исследовательские группы дали близкие цифры.

Существование двойного [pic]- распада было подтверждено, но какого именно - двухнейтринного или очень подавленного безнейтринного, - этого

- 36 -

опыты пока показать не могли. Вопрос о механизме распада в геологических экспериментах остается открытым.

Ответ на него мог быть получен только в прямых экспериментах (второй способ), в которых наблюдались продукты распада. Как уже отмечалось, если бы сумма энергий двух зарегистрированных электронов была постоянной и равной энергии, выделяемой при распаде, это указывало бы на существование безнейтринного процесса и нарушение закона сохранения лептонного заряда.
Прямые опыты проводились с самыми различными типами детекторов: камерой
Вильсона, фотоэмульсиями, искровой камерой, сцинтилляционными и полупроводниковыми счетчиками.

Наиболее интересными являются работы миланской группы (группы
Фиорини), в Международной лаборатории космических лучей, проведенные с использованием полупроводникового счетчика для исследования перехода 76Ge
[pic] 76Se. (Рис. 5).

Основной частью полупроводникового счетчика является p - n переход.
Свободных электронов здесь мало и в отсутствие ионизирующего излучения течет только малый тепловой ток. Тем меньший, чем больше сопротивление полупроводника, которое зависит от чистоты материала и от температуры кристалла. При прохождении заряженной частицы, она ионизирует атомы и в p - n - переходе появляются свободные заряды. Поле "растягивает" их в разные стороны, и возникающий при этом электрический сигнал может быть зарегистрирован. Самым привлекательным свойством полупроводниковых счетчиков является возможность очень точно определять энергию, потерянную частицей в области p - n перехода, т.е. хорошее энергетическое разрешение.
Основной недостаток таких детекторов - малое количество вещества в чувствительном объеме.

Рис.5. Схема установки используемой лионской группой.

- 37 -

Под высочайшим из альпийских пиков - Монбланом - проложен туннель длиной почти двенадцать километров, соединяющий Италию и Францию. На расстоянии четырех километром от итальянского выхода из туннеля рас- положена Лаборатория космических лучей. Сверху ее защищает около двух километров горных пород или около 4000 метров водного эквивалента.

Такая мощная защита в миллионы раз ослабляет поток космических мюо- нов.

Внешняя защита - парафин - замедляет быстрые нейтроны, рождающиеся при взаимодействии мюонов с веществом или связанные с распадом естественных радиоактивных элементов. Дальше идет слой кадмия - "абсолютно черный", т.е. полностью поглощающий медленные нейтроны. Против гамма - квантов ведет борьбу защита из свинца. Сначала слой обычного свинца, но в нем самом могут быть загрязнения от примесей урана или тория. Кроме того, с развитием атомной промышленности и атомных испытаний многие материалы оказались "зараженными" радиоактивностью. Для человека эта радиоактивность совершенно не заметна - она в сотни и тысячи раз меньше естественного фона, но для таких низкофоновых установок она может оказаться опасной. Поэтому внутренний слой свинца специальный - с низким уровнем радиоактивности. Последний слой пассивной защиты - слой многократно очищенной перегонкой ртути. И, наконец, сердце установки - германиевый детектор.

Через хладопровод низкая температура от дюара с жидким азотом передавалась на кристалл германия. Этот кристалл выполнял двоякую роль. С одной стороны, он служил детектором образующихся электронов, а с другой
- их источником. Дело в том, что в природном германии содержится около
7,5 % германия с атомным весом 76. Он может переходить в селен-76 с излучением двух электронов (в случае безнейтринного распада их суммарная энергия равна 2МэВ).

Для опытов был выращен уникальный по величине и чистоте кристалл объемом 68 см3. Он обладал великолепным энергетическим разрешением. В своих работах группа Фиорини приводит энергетический спектр зарегистрированных событий - многочисленные пики от различных радиоактивных элементов. Но в области 2 МэВ - там, где на равномерное распределение фоновых импульсов должен был наложиться "пик" от двух электронов с суммарной энергией 2,045
МэВ при общем времени наблюдения в 187 суток, никаких пиков не наблюдалось. Это дало возможность

Страницы: 1, 2, 3, 4, 5




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.