Меню
Поиск



рефераты скачать Физика (лучшее)

Существуют различные методы определения влажности.

1.     Наиболее точным является весовой метод. Для определения влажно­сти воздуха его пропускают через ампулы, содержащие вещества, хорошо поглощающие влагу. Зная увеличение массы ампул и объём пропущенного воздуха, определяют абсолютную влажность.

2.     Гигрометрические методы. Установлено, что некоторые волокна, в том числе человеческий волос, изменяют свою длину в зависимости от от­носительной влажности воздуха. На этом свойстве основан прибор, назы­ваемый гигрометр ом. Имеются и другие типы гигрометров, в том числе и электрические.

З.    Психрометрический метод — это наиболее распространенный ме­тод измерения. Суть его состоит в следующем. Пусть два одинаковые тер­мометра находятся в одинаковых условиях и имеют одинаковые показания. Если же баллончик одного из термометров будет смочен, например, обернут мокрой тканью, то показания окажутся различными. Вследствие испарения воды с ткани так называемый влажный термометр показывает более низкую температуру, чем сухой. Чем меньше относительная влажность окружающего воздуха, тем интенсивнее будет испарение и тем ниже показание влажного термометра. Из показаний термометров определяют разность температур и по специальной таблице, называемой психрометрической, определяют относительную влажность воздуха.


Билет № 10

Твёрдые тела бывают аморфными и кристаллическими. Аморфными. называют тела, в которых атомы или молекулы расположены беспорядоч­но. Примерами этих тел являются янтарь, стекло, пластмассы и т.д. Аморфные тела являются изотропными, т.е. их физические свойства оди­наковы по всем направлениям. Твёрдые тела, атомы или молекулы кото­рых расположены в определённом порядке, называются кристаллами. Все кристаллические тела делятся на монокристаллы и поликристаллы. Монокристаллы представляют собой одиночные кристаллы, имеющие единую кристаллическую решетку. Монокристаллы встречаются в приро­де в естественных условиях (кварц, поваренная соль, рубин алмазы и т.д.). Создав специальные условия (удаление примесей, очень медленное охла­ждение расплавов и т.д.) их можно вырастить искусственно. Физиче­ские свойства (механические, теп­ловые, электрические, оптические) монокристаллов, как правило, раз­личны по различным направлениям. Как показатель преломления кри­сталла исландского шпата зависит от того, как на него падает луч све­та. Такое свойство кристаллических тел называется‚ анизотропностью. Поликристаллы представляют собой совокупность большого числа срос­шихся между собой и хаотически ориентированных маленьких монокристаллов, называемых кристалли­тами. Такое поликристаллическое тело в целом изотропно, хотя каждый кристаллит сам по себе анизотропен. Поликристаллы получаются, как пра­вило, путём кристаллизации жидкого вещества при охлаждении его в обычных условиях.

Для наглядного представления структуры кристаллов применяется способ изображения его с помощью кристаллической решётки. Кристал­лической решёткой называется пространственная сетка, узлы которой совпадают с центрами атомов или молекул в кристалле .

По характеру взаимодействия частиц (атомов, молекул, ионов), распо­ложенных в узлах кристаллической решётки, различают четыре типа кри­сталлов: атомные, ионные, металлические и молекулярные кристаллы.

1. Ионные кристаллы. В узлах кристаллической решётки этих кри­сталлов располагаются новы разных знаков, причём они чередуются меж­ду собой. Силы взаимодействия между ними электростатические (кулоновские). Связь, обусловленная кулоновскими силами притяжения, называется ионной или гетерополярной. В ионном кристалле нельзя вы­делить отдельные молекулы. Примерами ионных кристаллов являются га­лоидные соединения щелочных металлов (NaC1, KBr, KCI и другие), а также оксиды различных элементов (CaO, MgO и т.д.).

2.      Атомные кристаллы. В этих кристаллах в узлах кристаллической решётки находятся нейтральные атомы, которые удерживаются в них так называемыми ковалентными связями. Ковалентная связь возникает толь­ко между двумя атомами парами валентных электронов (по одному от ка­ждого атома), движущихся по орбитам, охватывающих оба атома. Поэто­му число связей, в которых может участвовать данный атом, а следова­тельно, и число соседних атомов, связанных с ним, равно его валентности. Атомными кристаллами являются алмаз, кремний, германий и т.д. В пере­численных кристаллах каждый атом, например кремний, окружен четырь­мя такими же атомами, поскольку его валентность равна четырём. Атомы образуют кристаллическую структуру, в которой один атом расположен в центре тетраэдра, а четыре - в его вершинах. При этом ковалентная связь образуется между центральным атомом и атомами в вершинах тетраэдра.

3. Металлические кристаллы. Во всех узлах кристаллической решёт­ки расположены положительные ноны. Это объясняется тем, что при обра­зовании кристаллической решётки валентные электроны, наиболее слабосвязанные с атомами, отрываются от атомов и коллективизируются, т.е. они уже принадлежат не одному атому, а всему кристаллу в целом. Поэто­му в металлах между положительными нонами хаотически движутся элек­троны, взаимодействие которых с положительными нонами металла и приводит к возникновению сил притяжения, компенсирующих силы от­талкивания ионов и образованию кристалла.

4.    Молекулярные кристаллы. В узлах кристаллической решётки рас­полагаются молекулы, ориентированные определённым образом. Силы, образующие кристалл, имеют электростатическое происхождение. Следу­ет отметить, что многие свойства тел, такие как трение, прилипание, сцеп­ление, поверхностное натяжение, вязкость и т.д. являются проявлением электростатических сил. К молекулярным кристаллам относятся лёд, йод, парафин, большинство твёрдых органических соединений и т.п., а также водород, аргон, метан и другие газы после превращения их в твёрдые тела.

2. При строительстве и конструировании различных сооружений, в том числе и строительных, необходимо знать механические свойства исполь­зуемых материалов: бетона, железобетона, стали, пластмасс и т.д. Поэтому рассмотрим лишь механические свойства твёрдых тел.

1.     Основные понятии. деформацией называется изменение формы и размеров тела под действием приложенных сил. Различают два вида де­формации — упругую и пластическую. Упругой называют деформацию, которая исчезает после прекращения действия приложенных сил. Если же после снятия сил тело не возвращается в исходное состояние, то такая деформация называется пластической (неупругой). Вид деформации за­висит от материала тела и от величины приложенного усилия. Механиче­ским усилием (усилием) р называют внешнюю силу, отнесённую к единице площади, т.е.

где F — сила, действующая на площадку S. При деформации в теле возни­кают cилы, противодействующие внешним силам. Их называют упругими. Упругая сила, отнесённая к единице площади, называется механическим напряжением (напряжением)

где Fупр сила, действующая на площадку S.

Деформацию тел оценивают абсолютной и относительной деформацией. Абсолютной деформацией       DХ называют разность конечного Х  и начального Х0  размера тела, т.е.


Абсолютная деформация при растяжении положитель­ная, а при сжатии — отрицательная. Относительной деформацией e называется отношение абсолютной де­формации к первоначальному размеру  тела, т.е.

Относительная деформация показывает, на какую часть изменились пер­воначальные размеры тела. Существуют различные виды деформации:

продольное растяжение (или сжатие), сдвиг, кручение, изгиб. Рассмотрим некоторые из них.

2.   Продольное растяжение (или сжатие). Простейшим видом дефор­мации твёрдого тела является продольное растяжение (сжатие). Оно воз­никает в тонком стержне, один конец которого закреплён, а к другому вдоль его оси приложена сила Г, равномерно распределённая по попереч­ному сечению стержня В результате этого длина стержня из­меняется от  до  Гук показал, что при упругой деформации удлинение(сокращение) стержня пропорционально приложенной силе


где k -  коэффициент пропорциональности. Это соотношение называют законом Гука. Однако удлинение (сжатие) тела зависит не только от приложенной силы, но и от его геометрической формы и размеров, а также от материала, из которого оно сделано. Опытным путём установлено, что чем длиннее стержень, тем он больше удлиняется (сокращается) при данной силе, и чем больше площадь его поперечного сечения, тем его удлинение (сокращение) меньше. Это утверждение можно записать математически следующим образом:

где l0 и S - длина и площадь поперечного сечения стержня, Dl - измене­ние длины стержня под действием силы F, Е — модуль Юнга. Но, усилие, действующее на стержень, равно F/S =  р, так как сила равномерно распределена по сечению, и Dl/I0 = e — относительное удли­нение (сжатие) стержня  Тогда соотношение запишется в виде

т.е.  в пределах упругости относительная деформация пропорциональ­на усилию, приложенному к телу.

Усилие, приложенное к телу, одинаково в любом поперечном сечении стержня. Оно вызывает появление внутри стержня напряжении, которые также будут одинаковы по всей его длине и равны усилию по модулю, но  противоположны по направлению, т.е. . С учётом этого выражение запишется:

Таким образом, напряжение упруго-деформированного тела пропорцио­нально его относительной деформации.

Модуль Юнга является важной характеристикой материала, из которо­го изготовлено тело, независимо от его формы и размеров. Он измеряется в паскалях (Па). Выясним физический смысл модуля Юнга. Из (42.7) сле­дует, что если е = 1 (когда Al = ‘о), то Е = р, т.е. модуль Юнга равен усилию, которое надо приложить к телу, чтобы изменить его длину вдвое при сохранении упругой деформации. В действительности же подавляюще число материалов разрушается значительно раньше, чем это произойдёт. Следовательно, величина Е вычисляется, а не измеряется непосредствен­но. Наиболее удобным способом исследования механических свойств твёрдого тела является его испытание на растяжение и построение диаграмм растяжения, т.е. зависимости между относительным удлинением e и усилием p.


Билет № 26

1. Радиоактивность. Процесс самопроизвольного распада атомных ядер называют радио­активностью. Радиоактивный распад ядер сопровождается  превращени­ем одних нестабильных ядер в другие и испусканием различных частиц. Было установлено, что эти превращения ядер не зависят от внешних усло­вий: освещения, давления, температуры и т.д. Существует два вида радио­активности: естественная и искусственная. Естественная радиоактивность наблюдается у химических элементов находящихся в природе. Как прави­ло, она имеет место у тяжёлых ядер, располагающихся в конце таблицы Менделеева, за свинцом. Однако имеются и лёгкие естественно-радиоактивные ядра: изотоп калия , изотоп углерода  и другие. Искусственная радиоактивность наблюдается у ядер, полученных в лабо­ратории с помощью ядерных реакций. Однако принципиального различия между ними нет.

Известно, что естественная радиоактивность тяжёлых ядер сопровож­дается излучением, состоящим из трёх видов: a-, b-, g-лучи. a-лучи - это поток ядер гелия  обладающих большой энергией, которые имеют дискретные значения. b-лучи -  поток электронов, энергии которых при­нимают всевозможные значения от величины, близкой к нулю до 1,3 МэВ. g-лучи — электромагнитные волны с очень малой длиной волны.

Радиоактивность широко используется в научных исследованиях и технике. Разработан метод контроля качества изделий или материалов – дефектоскопия. Гамма-дефектоскопия позволяет установить глубину залегания и правильность расположения арматуры в железобетоне, выявить раковины, пустоты или участки бетона неравномерной плотности, случаи неплотного контакта бетона с арматурой. Просвечивание сварных швов позволяет выявить различные дефекты. Просвечиванием образцов извест­ной толщины определяют плотность различных строительных материалов; плотность, достигаемую при формировании бетонных изделий или при укладке бетона в монолит, необходимо контролировать, чтобы получит заданную прочность всего сооружения. Степень уплотнения грунтов и до­рожных оснований — важный показатель качества работ. По степени по­глощения g-лучей высокой энергии можно судить о влажности материа­лов. Построены радиоактивные приборы для измерения состава газа, при­чём источником излучения в них является очень небольшое количество изотопа, дающего g-лучи. Радиоактивный сигнализатор позволяет опреде­лить наличие небольших примесей газов, образующихся при горении лю­бых материалов. Он подаёт сигнал тревоги при возникновении пожара в помещении.


2. Методы регистрации заряженных частиц. В настоящее время хорошо установлено, что ядро атома имеет слож­ную структуру и состоит из протонов и нейтронов. Из рассмотрения явле­ния радиоактивности следует, что ядра могут претерпевать существенные изменения. Всё это наводит на мысль, что нуклоны могут превращаться друг в друга и сама структура протонов, нейтронов и даже электронов мо­жет быть сложной. Встаёт вопрос о том, существуют ли какие-то кирпичики мироздания (их физики назвали элементарными частицами), из кото­рых построено всё? Ответ оказался очень сложным, и сейчас ещё на него нет окончательного ответа. В настоящее время физикам известны сотни элементарных (или, как говорят, субъядерных) частиц. Изучением их за­нимаются учёные, работающие в области физики элементарных частиц. Каким же образом можно “увидеть’, зарегистрировать столь малые объек­ты, которые недоступны никакому микроскопу? для этого разработан це­лый ряд хитроумных, весьма тонких способов, которые позволяют не только их зарегистрировать, распознать, но и увидеть их взаимные пре­вращения.

Рассмотрим только некоторые наиболее важные и широко используе­мые методы регистрации излучений. Элементарные частицы удаётся на­блюдать благодаря тем следам, которые они оставляют при своем прохож­дении через вещество. Это связано с тем, что заряженные частицы вызывают ионизацию молекул на своём пути. нейтральные частицы, такие как нейтроны, следов не оставляют, но они могут обнаружить себя в момента спада на заряженные частицы или в момент столкновения с каким – либо ядром.

1.    Сцинцилляционные методы. Существует ряд веществ (бензол, нафталин, сернистый цинк с серебром и т.д.), которые дают световую вспышку (сцинцилляцию) при прохождении через них ионизирующего излучения. Эту вспышку можно зарегистрировать как просто глазом, так и соответствующим прибором, преобразующим световой сигнал в электри­ческий.

2.    Счётчик Гейгера. Это устройство представляет собой стеклянную трубку, наполненную газом, в которую введены два электрода. Одни явля­ется цилиндрической поверхностью, другой тонкой проволокой, про­ходящей с одного торца к другому, по оси цилиндра. К электродам подво­дится напряжение. При пролёте через такую трубку заряженной Частицы, молекулы газа ионизируются, образовавшиеся ионы разгоняются электри­ческим полем и в свою очередь ионизируют другие молекулы, в результате чего образуется лавина ионов. В этот момент по электрической цепи, в ко­торую включена трубка, проходит ток в виде импульса. Процесс повторя­ется при каждом пролёте частицы, и электронный прибор регистрирует и считает число пролетевших частиц. Счётчик Гейгера играет весьт’4а боль­шую роль при изучении радиоактивности, радиоактивного заражения, при измерении доз, полученных в заражённых зонах.

3.    Метод толстослойных фотопластин Заряженные частицы, прохо­дя через фотоэмульсию, вызывают такое же действие, как свет. Поэтому после проявления фотоматериала в эмульсии проявляется видимый след, который можно легко увидеть в микроскоп.

4.  Камера Вильсона. Принцип действия камеры основан на явлении конденсации пересыщенного пара при пролёте через него заряженной час­тицы. дорожку из капелек жидкости можно сфотографировать С несколь­ких точек и получить данные о пространственном расположении траекто­рии полёта частицы. Если камеру поместить между полюсами электромаг­нита, то в результате взаимодействия частицы с полем траектории частицы будет искривляться и по этому искривлению можно определить знак заря­да частицы и её импульс.

Биологическое действие радиоактивных излучении Излучения радиоактивных веществ оказывают очень сильное воздействие на все живые организмы. Даже сравнительно слабое излучение, которое при полном поглощении повышает темпера­туру тела лишь на 0,00 1 °С, нарушает жизнедеятельность клеток.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.