Меню
Поиск



рефераты скачать Технология электроконтактного нагрева заготовок

Механизация загрузки и выгрузки заготовок и автоматизация работы нагревательной установки являются очень важными вопросами не только с эксплуатационной точки зрения, но и с точки зрения конструкции установки, которая при этом усложняется. Поэтому, прежде чем приступить к разработке проекта, нужно обосновать необходимость и целесообразность механизации и автоматизации загрузки и выгрузки заготовок, учитывая все ее преимущества и отрицательные стороны.

Определениепроизводительности электроконтактной установки

Производительность электроконтактной установки задается или устанавливается исходя из местных специфических условий каждого отдельного предприятия.

Она указывается в соответствующем технологическом задании. При разработке проекта остается определить скорость нагрева с учетом времени, необходимого для разгрузочно-загрузочных, транспортных и других операций.

Если расчетное время не отличается от полученного графическим путем, то заданную производительность можно считать приемлемой, в противном случае необходимо выяснить обоснованность заданной производительности и принять меры к устранению осложнений, которые могут возникнуть при нагреве.

Но если время нагрева или производительность должны быть определены при проектировании, то первое находят по указанному графику с учетом типоразмера заготовки; затем, прибавив к этой величине дополнительное время, затрачиваемое на другие операции и равное 15—25% от, времени нагрева (зависит от величины последнего), по формуле (25) определяют производительность электроконтактной установки:


П = (3,6 К.' G2 )/τ т/ч, (25)


где G2 — масса нагреваемой части заготовки в кг;

К.' — коэффициент, учитывающий дополнительное время, за трачиваемое на другие операции, связанные с нагревом;

τ — время нагрева в сек.

Темп выдачи нагретых заготовок или время одного Цикла работы установки определяется по формуле:


 (26)


Выбор технологического варианта и типа электроконтактной установки

Выбор технологического варианта электроконтактного нагрева и соответственно выбор конструктивного типа нагревательной установки является одним из основных вопросов, который должен быть решен, как правило, перед проектированием конкретной установки определенной технологически-конструктивной группы.

В большинстве случаев технологический принцип или вариант нагрева определяет тип нагревательной установки, конструкцию и предопределяет принадлежность ее к соответствующей технологически-конструктивной группе. Но разнообразие конструктивных типов электроконтактных

установок данной группы


Рисунок 5.1 - График


приводит к необходимости выбирать установки с оптимальными данными, обеспечивающими наилучшие технико-экономические показатели: к. п. д., коэффициент мощности, стоимость нагрева, производительность и др.

Бывает, что, несмотря на меньшую массу металла, подлежащего нагреву, двухзональная установка оказывается менее рентабельной и эффективной, чем однозональная, на которой будет нагреваться заготовка по всей длине, включая и участок между зонами.

Вопрос о выборе конструкций установки должен быть решен в каждом отдельном случае применительно к конкретным условиям.

Покажем это на конкретном примере. Предположим, что по технологическим соображениям требуется нагреть заготовку в двух местах для гибки (рисунок 5.1). Участок заготовки /2 = 200 мм между нагреваемыми зонами можно не нагревать, так как это не требуется по условиям гибки.

Если остановить выбор на однозональной установке, т. е. нагревать заготовку по всей длине, включая и участок между зонами, то отношение длины к площади сечения /2/s2 будет равно 2,4, а при двухзональном варианте установки — 1,6.

По графикам на рисунке 5.2 и 5.3 находим к. п. д. и коэффициент мощности для указанных значений /2/s2 применительно к однозональнои и двухзональной установкам. Для первой ή = 0,67 и cos f1 = 0,65, а для второй ή= 0,46 и cos f 2 = 0,64.

Если принять полезную энергию для нагрева двух зон заготовки на двухзональной установке W2, то расход энергии из сети будет:


 (27)


Для однозональной установки потребный минимум энергии возрастет в 1,5 раза по сравнению с двухзональной установкой, поэтому энергия, потребляемая из сети однозональнои установкой, будет равна:


Wс1=1,5 W2 /(ή1cos f 2) (28)


Расход активной и реактивной энергии, потребляемой из сети этими установками, практически одинаковый, несмотря на то, что на однозональнои установке нагревается большая масса металла; поэтому, учитывая сложность конструкции двухзональной установки и неудобство ее эксплуатации, целесообразно в подобных случаях применять однозональную установку.

Подобные примеры еще чаще встречаются при проектировании установок других технологически-конструктивных групп многозонального нагрева.

При проектировании установок сталкиваются с двумя основными вопросами: выбором технологического варианта нагрева и выбором конструктивного типа нагревательной установки данной технологически-конструктивной группы.

Определение коэффициента полезного действия

Для определения к. п. д. наиболее целесообразно расчеты производить в следующей последовательности:

1.  Определить отношение длины к площади поперечного сечения нагреваемой детали.

2.  По кривой 4 на рисунке 4.2 в соответствии со значениями отношений /2/s2 определить предварительное оптимальное значение к. п. д., по которому найти другие характеристики или технические данные проектируемой установки с учетом того, что используемый в расчетах к. п. д. является оптимальным (если конкретный тип установки не выбран, а речь идет вообще о контактном нагреве).

3.  Определить эксплуатационный к. п. д. в соответствии с расчетным отношением /2/s2 в случае, если выбран конкретный тип одно- или двухзональной установок, конструкция которых

аналогична разработанным в НЙИТракторосельхозмаше, и если геометрические размеры нагреваемых зон соответствуют размерам, приведенным на рисунке 5.2. Эти значения к. п. д. следует рассматривать как минимальные, так как они соответствуют эксплуатационным данным одно- и двухзональных нагревательных установок.

4. Для установок других типов расчет к. п. д. производится по данным, соответствующим конкретной технологически-конструктивной группе установок. При отсутствии последних можно воспользоваться кривыми на рисунках 4.2 или 5.2.

Если ни один из перечисленных вариантов определения к. п. д. не может быть использован и требуется произвести подробные расчеты к. п.д. цепи установки и тепловой к. п. д., то следует воспользоваться формулами и рекомендациями, изложенными применительно к данным конкретным условиям.


Рисунок 5.2 - График


Однако следует иметь в виду, что для таких расчетов необходимо иметь конструктивные размеры всех элементов силовой цепи установки, а следовательно, почти полностью спроектированную установку. Для ориентировочных расчетов или оценки тех или иных характеристик или показателей, необходимых при проектировании, следует воспользоваться предварительными расчетно-эмпирическими кривыми (рисунок 4.2) и экспериментальными кривыми для соответствующей группы установок.

Определение коэффициента мощности

Следующим после к. п. д. техническим показателем электроконтактной установки является коэффициент мощности, который определяется в такой последовательности:

1. Находят отношение длины к сечению заготовки или заготовок (если в техническом задании речь идет о нескольких типоразмерах, нагреваемых на данной установке).

В соответствии с этим отношением по кривой рисунка 4.5 определяют коэффициент мощности, который следует считать оптимальным независимо от типа электроконтактной установки.

В том случае, когда выбран тип одно- или двухзональной установок обособленного нагрева, значения коэффициента мощности следует определять по кривым на рисунке 5.3, показывающим зависимость коэффициента мощности указанных электроконтактных установок НИИ Тракторосельхозмаша от отношения /2/s2 для различных типоразмеров заготовок. При этом значения коэффициента являются минимальными и наиболее правильными.


Рисунок 5.3 - Зависимость коэффициента мощности cos f1 электроконтактных установок обособленного нагрева от отношения /2/s2.

1 — для двухпозиционной установки при поочередном _нагреве заготовок d = 70 мм; 2 — то же при одновременном нагреве заготовок d= 60 мм 3 — для однозональной однопозиционной установки ЭУ-150, U = 180-360 мм; 4 — для двухпозиционной установки при поочередном нагреве заготовок длиной l2 = 850 мм; 5 — то же при одновременном нагреве заготовок длиной l2 = 850 мм', 6 — для однопозиционной двухзональной установки ЭУ-150 при нагреве заготовки с общей длиной нагреваемых зон l2 = 550-=-750 мм.


4.  Для других типов установок коэффициент мощности следует брать по данным, соответствующим конкретной технологически- конструктивной группе.

5.  После определения действительных конструктивных размеров элементов силовой цепи и конструкции установки можно произвести теоретический расчет коэффициента мощности по формуле (24), подставив в нее соответствующие значения общих со противлений установки, приведенных к сопротивлению первичной обмотки силового трансформатора. К теоретическому расчету следует прибегать только в том случае, если нельзя воспользоваться экспериментальными или эксплуатационными данными, приведенными выше. Такой расчет будет сугубо ориентировочным из-за целого ряда допущений, к которым при этом приходиться прибегать.

Расчет мощности нагревательной установки

После определения к. п. д. и коэффициента мощности можно перейти к расчету мощности нагревательной установки. При этом различают:

а)активную и реактивную мощности, потребляемые из сети нагревательной установкой;

б)активную и реактивную мощности, подводимые к нагреваемой детали.

Активная мощность определяется по формуле: (29)


.


Полная мощность, подводимая к нагреваемой детали, определяется по формуле: (30)



Где cos f2 коэффициент мощности нажимных контактах нагреваемой детали,

Определяемый по формуле: (31)


где r2 — активное сопротивление заготовки переменному току; z2 — полное сопротивление заготовки.

Поскольку активное сопротивление заготовки зависит от температуры, то и мощность изменяется в процессе нагрева.

Если в формулы (29), (30) и (31) подставить средние значения всех факторов, изменяющихся в процессе нагрева от температуры, то значения мощностей также будут средними.

Активная мощность, потребляемая из сети нагревательной установкой, определяется по формуле:


Pa=( CG2 (t2-t1))/ή0τ квт (32)


где ή0 — общий к. п.д.

Полная мощность', потребляемая из сети, определяется по формуле:


(33)


Значения к. п. д. и коэффициента мощности определяются по указанной выше методике.

Из сопоставления формул (30)—(33) видно, что активная и реактивная полные мощности, подводимые к заготовке, могут отличаться от таких же мощностей, потребляемых из сети, в зависимости от значения- теплового и общего к. п. д. и значения коэффициентов мощности нагрузки и установки. Разница в потребляемой мощности видна из кривых на рисунках 5.4 и 5.5; из фигур также видна зависимость коэффициентов мощности нагрузки и установки от диаметра детали и отношения длины к диаметру.

Следует иметь в виду, что определяемые по указанным формулам мощности являются средними за период нагрева.


Рисунок 5.4 – График Рисунок 5.5 - График


Для каждого данного момента времени они будут различны и соответствовать значениям сопротивлений заготовок и токов в них при температуре, относящейся к этому моменту времени. При проектировании целесообразно производить расчет мощности для начала и конца нагрева с тем, чтобы оценить, насколько значительны колебания мощности в процессе нагрева, а для этого необходимо знать сопротивления заготовки и всей цепи, а также температуру детали для соответствующего момента времени.

Расчет сопротивления нагреваемой детали

Активное и реактивное сопротивления' детали являются одними из основных и определяющих электротехнических характеристик (тока, напряжения, мощности и др.) режима нагрева и технических показателей электроконтактной нагревательной установки.

Определение электрического сопротивления деталей при электроконтактном нагреве осложняется наличием скинн-эффекта и зависимостью удельного сопротивления и магнитной проницаемости материалов от температуры.

Сопротивление детали переменному току находится в более сложной зависимости от геометрических параметров детали и магнитных свойств. Это объясняется своеобразной зависимостью магнитной проницаемости от температуры.

Активное сопротивление цилиндрической заготовки переменному току можно определить по формуле:


r2/r0 =0.5ε0 (j0 (ε0)/j1(ε)) (34)

где r2 — активное сопротивление детали переменному току;

r 0 — то же постоянному току;





Здесь μ — магнитная проницаемость материала; μ0 = 4π-10-9 гн/см;

R2 — радиус цилиндрической заготовки в см;

ς2 — удельное электрическое сопротивление в ом-см;

j0 — функция Бесселя первого рода нулевого' порядка;

j1 — функция Бесселя первого рода первого порядка.

Зависимость активного сопротивления от отношения радиуса детали к глубине проникновения R2/δ2 приведена на рисунке 5.6 (кривая 1)

Из рисунка 5.6 видно, что для R2/δ2 от 0 до 1 активное сопротивление детали переменному току не отличается от сопротивления постоянному току, а для R2/δ2 >1 оно отличается от последнего тем больше, чем больше значение R2/δ2.

На рисунке 5.6 приведены экспериментальные и расчетные кривые активных сопротивлений заготовок диаметром 12 и 35 мм в функции температуры по отношению к сопротивлению при 20° С.

Из рассмотрения кривых можно сделать следующие выводы:

1.  С возрастанием температуры от 20 до 1000° С активное сопротивление заготовок диаметром 12 и 35 мм возрастает соответственно примерно в 2 и 4,5 раза, в то время как сопротивление их постоянному току в том же интервале температур возрастает в 9—10 раз. Это свидетельствует о существенном влиянии скинн-эффекта на сопротивление детали, находящейся при температуре ниже точки Кюри.

2.  Степень возрастания сопротивления с температурой у заготовок диаметром 12 и 35 мм также подтверждает влияние скинн-эффекта.

В то время как сопротивление заготовки диаметром 35 мм, у которой скинн-эффект более резко выражен (отношение R2/δ2 большое), возрастает всего в 2 раза, у заготовки диаметром 12 мм (R2/δ2 меньше) оно возрастает уже в 4,5 раза.

Сопротивления указанных заготовок, вычисленные по формуле (34) с учетом изменения электрического сопротивления и магнитной проницаемости от температуры (μ = 200 при t = 200-760° С и μ = 1 при t = 760° С), несколько больше экспериментальных. Это, провидимому, объясняется тем, что абсолютное значение магнитной проницаемости и характер зависимости ее от температуры взяты отличными от расчетных.


Рисунок 5.6 – График Рисунок 5.7 - График


Следовательно, скинн-эффект при низких температурах существенно сказывается на активном сопротивлении.

Необходимо также считаться и с реактивным сопротивлением детали.

Реактивное сопротивление определяется по формуле, аналогичной формуле (34).

Если графически выразить зависимость реактивного сопротивления от отношения R2/δ2, то получится кривая 2, изображенная на рисунке 5.6.

Модуль общего сопротивления нагреваемой детали определяется по известной формуле: (35)



При равенстве активного и реактивного сопротивлений полное сопротивление детали равно:


r2 = 1,4r2 = 1,41Х2.


Приведенные выше формулы и графики справедливы для цилиндрических деталей. В общем случае для любого сечения, например для сечения прямоугольной формы, можно воспользоваться формулами, рекомендуемыми проф. Л. Р. Нейманом.

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.