Меню
Поиск



рефераты скачать Термодинаміка і синергетика

Флуктуація ® Біфуркація

нерівноважний фазовий перехід ®

Народження впорядкованої структури

Біфуркація в широкому розумінні - придбанні нової якості рухами динамічної системи при малій зміні її параметрів ( виникнення при деякому критичному значенні параметра нового вирішення рівнянь ) . Відзначимо, що при біфуркації вибір наступного стану носить суто випадковий характер, так що перехід від одного необхідного стійкого стану до іншого необхідного стійкому стану проходить через випадкове (діалектика необхідного і випадкового) . Будь-який опис системи, що зазнає біфуркацію, включає як детерміністичний, так і імовірнісний елементи, від біфуркації до біфуркації поведінці системи детерміновано, а в околиці точок біфуркації вибір подальшого шляху випадковий. Проводячи аналогію з біологічною еволюцією можна сказати, що мутації - це флуктуації, а пошук нової стійкості грає роль природного відбору. Біфуркація в деякому розумінні вводить у фізику і хімію елемент історизму - аналіз стану в1, наприклад, має на увазі знання історії системи, що пройшла біфуркацію.

Загальна теорія процесів самоорганізації відкритих сильно не рівноважних системах розвивається на основі універсального критерію еволюції Прігожіна-Гленсдорфа. Цей критерій є узагальненням теореми Прігожіна про мінімальне виробництво ентропії. Швидкість виробництва ентропії, обумовлена зміною термодинамічних сил Х, згідно цьому критерію підкоряється умові


dx P / t £ 0 (2.6)£


Ця нерівність не залежить не від яких припущень про характер зв'язків між потоками і силами в умовах локальної рівноваги і носить по цьому універсальний характер . У лінійній області нерівність (2.6. ) переходить в теорему Прігожіна про мінімальне виробництво ентропії . Отже, в неравновестной системі процеси йдуть так, тобто система еволюціонує таким чином, що швидкість виробництва ентропії при зміні термодинамічних сил зменшується (або рівна нулю в стаціонарному стані).

Впорядковані структури, які народжуються далеко від рівноваги, відповідно до критерію (2.6.) і є диссипативні структури.

Еволюція біфуркації і подальшої самоорганізації обумовлено, таким чином, відповідними не рівноважними обмеженнями.

Еволюція змінних Х описуватиметься системою рівнянь


  (2.7)


де функції F як завгодно складним чином можуть залежать від самих змінних Х і їх просторових похідних координат r і часу t . Крім того, ці функції буду залежать від параметрів, що управляють, тобто тих характеристик, що змінюються, які можуть сильно змінити систему . На перший погляд здається очевидним, що структура функції { F } буде сильна визначаться типом відповідної даної системи . Проте, можна виділити деякі основні універсальні риси, незалежні від типу систем.

Вирішення рівняння (2.7), якщо немає зовнішніх обмежень, повинні відповідати рівновазі при будь-якому виді функції F . Оскільки рівноважний стан стаціонарний, то


Fi ({Xрав},равl ) = 0 (2.8)l


У більш загальному випадку для нерівноважного стану можна аналогічно написати умову


Fi ({X},l) = 0 (2.9)l


Ці умови накладають певні обмеження універсального характеру, наприклад, закони еволюції системи повинні бути такими, щоб виконувалася вимога позитивності температури або хімічної концентрації, що отримуються як вирішення відповідних рівнянь.

Іншою універсальною межею є нелінійним . Хай, наприклад деяка єдина характеристика системи задовольняє рівнянню


 (2.10)


де до - деякий параметр, l - зовнішні обмеження, що управляють . Тоді стаціонарний стан визначається з наступного рівняння алгебри


l - kX = 0 (2.11)l

звідки

Xs = l / до (2.12)l


У стаціонарному стані, таким чином, значенні характеристики, наприклад, концентрації, лінійно змінюється залежно від значень обмеженняl, що управляєl, і є для кожного єдиний стан Хs . Абсолютно однозначно можна передбачити стаціонарне значення Х при будь-якомуl,если мати хоч би два експериментальні значення Х(l). Керуючий параметр може, зокрема, відповідати ступеню віддаленості системи від рівноваги . Поведінка в цьому випадку системи дуже схожі на рівновазі навіть за наявності сильно нерівноважних обмежень.


Мал. 2.6. Ілюстрація універсальної межі нелінійності в самоорганізації структур


Якщо ж стаціонарне значення характеристики Х не лінійно залежить від обмеження, що управляє, при деяких значеннях, то при одному і тому ж значенні є декілька різних рішень . Наприклад, при обмеженнях система має три стаціонарні рішення, малюнок 2.6.в. Така універсальна відмінність від лінійної поведінки наступає при досягненні параметром, що управляє, деякого критичного значення l - виявляється біфуркація. При цьому в нелінійній області невелике збільшення може привести до неадекватно сильному ефекту - система може зробити стрибок на стійку гілку при невеликій зміні поблизу критичного значенняl, малюнок 2.6.в. Крім того з перебувань на гілці А1в можуть відбуватися переходи Ав1 ( або навпаки ) навіть раніше, ніж будуть досягнуті полягання В або А, якщо обурення накладаються на стаціонарний стан, більше значення, відповідного проміжній гілці А В . Обуреннями можуть служити або зовнішня дія або внутрішні флуктуації в самій системі. Таким чином, системі з множинними стаціонарними станами властиво універсально властивостям внутрішньо збудливість і мінливості скачкам.

Виконання теореми по мінімально виробництві ентропії в лінійній області, а, як узагальнення цієї теореми, виконання універсального критерію (2.6.) і в лінійній, і в нелінійній області гарантують стійкість стаціонарних нерівноважних станів. В області лінійності необоротних процесів виробництво ентропії грає таку ж роль, як термодинамічні потенціали в рівноважній термодинаміці. У нелінійній області величина dP / dt не має якого або загальної властивості, проте, величина dx P/dt задовольняє нерівності загального характеру (2.6.), яка є узагальненням теореми про мінімальне виробництво ентропії.


2.3 ПРИКЛАДИ САМООРГАНІЗАЦІЇ РІЗНИХ СИСТЕМ


Розглянемо як ілюстрацію деякі приклади самоорганізації систем у фізиці, хімії, біології і соціумі


2.3.1 ФІЗИЧНІ СИСТЕМИ

В принципі навіть в термодинамічній рівновазі можна вказати приклади самоорганізації, як результати колективної поведінки . Це, наприклад, всі фазові переходи у фізичних системах, такі як перехід рідина - газ, феромагнітний перехід або виникнення надпровідності . У нерівноважному стані можна назвати приклади високої організації в гідродинаміці, в лазерах різних типів, у фізиці твердого тіла - осцилятор Ганна, тунельні діоди, зростання кристалів.

У відкритих системах, міняючи потік речовини і енергії із зовні, можна контролювати процеси і направляти еволюцію систем до станів, все більш далеких від рівноваги. В ході нерівноважних процесів при деякому критичному значенні зовнішнього потоку з неврегульованих і хаотичних станів за рахунок втрати їх стійкості можуть виникати впорядковані стани, створюватися дисипативні структури.


2.3.1а ОСЕРЕДКИ БЕНАРА

Класичним прикладом виникнення структури з повністю хаотичної фази є конвективні осередки Бенара . У 1900 році була опублікована стаття Х.Бенара з фотографією структури, що по вигляду нагадувала бджолині соти (мал. 2.7).


Мал. 2.7. Осередки Бенара :

а) - загальний вид структури

б) - окремий осередок.


Ця структура утворилася в ртуті, налитій в плоску широку судину, що підігрівається знизу, після того, як температурний градієнт перевищив деяке критичне значення . Весь шар ртуті (або іншій в'язкій рідині) розпадався на однакові вертикальні шестигранні призми з певним співвідношенням між стороною і висотою (осередки Бенара). У центральній області призми рідина піднімається, а поблизу вертикальних граней - опускається . Виникає різниця температур Т між нижньою і верхньою поверхнею DТ = Т2 - Т1 > 0 .Для малих до критичних різниць Т < DТkp рідина залишається в спокоїD><D, тепло від низу до верху передається шляхом теплопровідності . Досягши температури підігріву критичного значення


Т2 = Тkp (відповідно Т = DТkp )


починається конвекція. Досягши критичного значення параметра Т, народжується, таким чином, просторова диссипативна структура . При рівновазі температури рівні Т2 =Т1, DТ = 0 . При короткочасному підігріві (підводі тепла) нижньої площини, тобто при короткочасному зовнішньому обуренні температура швидко стане однорідною і рівною її первинному значенню . Обурення затухає, а стан - асимптотика стійко. При тривалому, але до критичному підігріві ( DТ < Тkp ) в системі знову встановиться простий і єдиний стан, в якому відбувається перенесення до верхньої поверхні і передачі його в зовнішнє середовище (теплопровідність), мал. 2.8, ділянка а . Відмінність цього стану від рівноважного стану полягає в тому, що температура, щільність, тиск стануть неоднорідними. Вони будуть приблизно лінійно змінюватися від теплої області до холодної .


Мал. 2.8. Потік тепла в тонкому шарі рідини


Збільшення різниці температур DТ, тобто подальше відхилення системи від рівноваги, приводить до того, що стан нерухомої теплопроводящей рідини стає нестійким ділянка б на малюнку 2.8. Цей стан змінявся стійким станом (ділянка в на мал. 2.8), утворенням осередків, що характеризується . При великих різницях температур рідина, що покоїться, не забезпечує велике перенесення тепла, рідина ²вимушена рухатися, причому кооперативним колективним узгодженому образом.

Далі це питання розглядається в 3 розділі.


2.3.1б ЛАЗЕР ЯК СИСТЕМА, ЩО САМООРГАНИЗУЄТЬСЯ

Отже, як приклад фізичної системи, впорядкованість якої є наслідок зовнішньої дії, розглянемо лазер.

При найгрубішому описі лазер - це якась скляна трубка, в яку поступає світло від некогерентного джерела (звичайної лампи), а виходить з неї вузьконаправлений когерентний світловий пучок, при цьому виділяється деяке кількості тепла.



При малій потужності накачування ці електромагнітні хвилі, які випускає лазер, некорельовані, і випромінювання подібно до випромінювання звичайної лампи. Таке некогерентне випромінювання - це шум, хаос. При підвищенні зовнішньої дії у вигляді накачування до порогового критичного значення некогерентний шум перетвориться в ²чистий тон, тобто випускає число синусоїдальна хвиля - окремі атоми поводяться строго корельованим чином, само організовуватимуться.

Лампа ® Лазер

Хаос ® Порядок

Шум ® Когерентне випромінювання

У надкритичній області режим ²звичайної лампи ²виявляється не стабільним, а лазерний режим стабільним, малюнок 2.9.


Мал. 2.9. Випромінювання лазера в до критичної (а) і

надкритичній (б) області.


Видно, що утворення структури в рідині і в лазері формально описується вельми схожим чином. Аналогія пов'язана з наявністю тих же самих типів біфуркацій у відповідних динамічних рівнях.

Докладніше це питання розглянемо в практичній частині, в 3 розділі.


2.3.2 ХІМІЧНІ СИСТЕМИ


У цій області синергетика концентрує свою увагу на тих явищах, які супроводжуються утворенням макроскопічних структур. Зазвичай якщо дати реагентам про взаємодіяти, інтенсивно перемішуючи реакційну суміш, то кінцевий продукт виходить однорідний. Але в деяких реакціях можуть виникати тимчасові, просторові або змішані (просторові - тимчасові) структури. Найбільш відомим прикладом може служити реакція Белоусова-Жаботінського.

2.3.2а РЕАКЦІЯ БЕЛАУСОВА-ЖАБОТІНСЬКОГО

Розглянемо реакцію Белоусова-Жаботинского. У колбу зливають в певних пропорціях Ce2(SO4), KBrO3, CH2(COOH)2, H2SO4, додають декілька крапель індикатора окислення - відновлення - ферроїна і перемішують. Конкретніше - досліджуються окислювально-відновні реакції


Ce 3+_ _ _ Ce 4+ ; Ce 4+_ _ _ Ce 3+


у розчині сульфату церію, броміду калі, молочної кислоти і сірчаної кислоти . Додавання ферогена дозволяє стежити за ходом реакції по зміні кольору ( по спектральному поглинанню). При високій концентрації реагуючих речовин, що перевищують критичне значення спорідненості, спостерігаються незвичайні явища.

При складі

сульфат церію - 0,12 ммоль/л

броміду калі - 0,60 ммоль/л

молочної кислоти - 48 ммоль/л

3-нормальна сірчана кислота

небагато ферроїна

При 60 Із зміни концентрації іонів церію набуває характер релаксаційних коливанні - колір розчину з часом періодично змінюється від червоного (при надлишку Се3+ ) до синього ( при надлишку Це 4+), малюнок 2.10а.


Мал. 2.10. Тимчасові (а) і просторові (б)

періодичні структури в реакції

Белоусова-Жаботінського

Така система і ефект отримали назву хімічний годинник. Якщо на реакцію Белоусова-Жаботінського накладати обурення - концентраційний або температурний імпульс, тобто вводячи декілька Мілімолей бромату калі або торкаючись до колби в перебігу декількох секунд, то після деякого перехідного режиму знову здійснюватимуться коливання з такою ж амплітудою і періодом, що і до обурення. Дисипативна Белоусова-Жаботінського, таким чином, є асимптотичне стійкою. Народження і існування незгасаючих коливань в такій системі свідчить про те, що окремі частини системи діють погоджено з підтримкою певних співвідношень між фазами. При складі

сульфату церію - 4,0 ммоль/л

броміду калі - 0,35 ммоль/л

молочної кислоти - 1,20 міль/л

сірчаної кислоти - 1,50 міль/л

небагато ферроїна

при 20 З в системі відбуваються періодичні зміни кольору з періодом близько 4 хвилин. Після декількох таких коливань спонтанно виникають неоднорідності концентрації і утворюються на деякий час ( 30 хвилин ), якщо не підводити нові речовини, стійкі просторові структури, малюнок 2.10б . Якщо безперервно підводити реагенти і відводити кінцеві продукти, то структура зберігається необмежено довго.


2.3.3 БІОЛОГІЧНІ СИСТЕМИ

Тваринний світ демонструє безліч високо впорядкованих структур і що прекрасно функціонують. Організм як ціле безперервно отримує потоки енергії (сонячна енергія, наприклад, у рослин) і речовин (живильних) і виділяє в навколишнє середовище відходи життєдіяльності. Живий організм - це система відкрита. Живі системи при цьому функціонують безумовно в далечіні від рівноваги. У біологічних системах, процеси самоорганізації дозволяють біологічним системам ²трансформувати ²енергію з молекулярного рівня на макроскопічний. Такі процеси, наприклад, виявляються в м'язовому скороченні, що приводить до всіляких рухів, в утворенні заряду у електричних риб, в розпізнаванні образів, мови і в інших процесах в живих системах. Складні біологічні системи є одним з головних об'єктів дослідження в синергетиці. Можливість повного пояснення особливостей біологічних систем, наприклад, їх еволюції за допомогою понять відкритих термодинамічних систем і синергетики в даний час остаточно неясна . Проте можна вказати декілька прикладів явного зв'язку між понятійним і математичним апаратом відкритих систем і біологічною впорядкованістю.

Конкретніше біологічні системи ми розглянемо в 3 розділі, подивимося динаміку популяцій одного вигляду і систему ²жертва - хижак².


2.3.4 СОЦІАЛЬНІ СИСТЕМИ

Соціальна система є певним цілісним утворенням, де основними елементами є люди, їх норми і зв'язки. Як ціле система утворює нову якість, яка не зводиться до суми якостей її елементів. У цьому спостерігається деяка аналогія із зміною властивостей при переході від малого до дуже великого числа частинок в статичній фізиці - перехід від динамічних до статичних закономірностей . При цьому вельми очевидно, що всякі аналогії з физико-хімічними і біологічними системами вельми умовні, тому проводити аналогію між людиною і молекулою або навіть щось подібне було б не допустимою помилкою . Проте, понятійний і математичний апарат нелінійної нерівноважної термодинаміки і синергетики виявляються корисними в описі і аналізі елементів самоорганізації в людському суспільстві.

Соціальна самоорганізація - один з проявів спонтанних або вимушених процесів в суспільстві, направлена на впорядкування життя соціальної системи, на більше саморегулювання. Соціальна система є системою відкритої здатна, навіть вимушена обмінюватися із зовнішнім світом інформацією, речовиною, енергією. Соціальна самоорганізація виникає як результат цілеспрямованих індивідуальних дій її складових.

Розглянемо самоорганізацію в соціальної системи на прикладу урбанізації зони. Проводячи аналіз урбанізації географічних зон можна припустити, що зростання локальної заселеності даної території буде обумовлено наявністю в цій зоні робочих місць. Проте, тут існує деяка залежність : стан ринку, що визначає потребу в товарах і послугах і зайнятості . Звідси виникає механізм нелінійного зворотного зв'язку в процесі зростання щільності населення. Таке завдання вирішується на основі логістичного рівняння, де зона характеризується зростанням її продуктивності N, нових економічних функцій S - функція в локальній області i міста. Логістичне рівняння описує еволюцію чисельності населення і може бути тоді представлена у вигляді

Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.