Меню
Поиск



рефераты скачать Тепловые преобразователи


.


Подобная цепь называется термоэлектрическим преобразователем или иначе термопарой; проводники, составляющие термопару, — термоэлектродами, а места их соединения — спаями.

Термо-ЭДС при небольшом перепаде температур между спаями можно считать пропорциональной разности температур: ЕАВ = SABAQ.

Опыт показывает, что у любой пары однородных проводников, значение термо-ЭДС зависит только от природы проводников и от температуры спаев и не зависит от распределения температуры вдоль проводников, Термоэлектрический контур можно разомкнуть в любом месте и включить в него один или несколько разнородных проводников. Если все появившиеся при этом места соединений находятся при одинаковой температуре, то не возникает никаких паразитных термо-ЭДС.

Можно разомкнуть контур в месте контактирования термоэлектродов А и В и вставить дополнительный проводник С между ними (рис. 4,6). Значение термо-ЭДС в этом случае определится как Е = ЕАВ (Q1) + ЕВС (Q0) + ЕСА (Qо) = ЕАВ (Q1) + ЕВА (Q0) = = ЕАВ (Q1) — ЕАВ (Q0), так как если два любых проводника А и В имеют по отношению к третьему С термо-ЭДС ЕАс и ЕВс, то термо-ЭДС термопары А В = ЕАВ = ЕАС + ЕСВ.

Можно разорвать также один из термоэлектродов и вставить дополнительный проводник в место разрыва (рис. 4, в). Значение термо-ЭДС в этом случае будет тем же, что и в предыдущем. Действительно,


Е = ЕАВ (Qх) Ч- Евс (Q1) + ЕСв (Qа) + ЕВА (Qв) =

= ЕАВ (Q1) - ЕАВ (Qв).


Таким образом, прибор для измерения термо-ЭДС может быть включен как между свободными концами термопары, так и в разрыв одного из термоэлектродов.

Явление термоэлектричества принадлежит к числу обратимых явлений, обратный эффект был открыт в 1834 г. Жаном Пельтье и назван его именем. Если через цепь, состоящую из двух различных проводников или полупроводников, пропустить электрический ток, то теплота выделяется в одном спае и поглощается в другом. Теплота Пельтье связана с силой тока линейной зависимостью в отличие от теплоты Джоуля, и нагревание или охлаждение спая зависит от направления тока через спай.

Во второй половине XIX в. Томсоном был открыт эффект, заключающийся в установлении на концах однородного проводника, имеющего температурный градиент, некоторой разности потенциалов и в выделении дополнительной тепловой мощности при прохождении тока по этому проводнику. Однако ЭДС Томсона и дополнительная тепловая мощность настолько малы, что в практических расчетах ими обычно пренебрегают.

КПД термоэлектрического генератора зависит от разности температур и свойств материалов и для существующих материалов очень мал (при DQ = 300 °С не превышает h = 13%, а при DQ = 100 °С , h = 5%).

КПД термоэлектрического подогревателя или холодильника также очень мал: для холодильника КПД при температурном перепаде 5 °С составляет 9%, а при перепаде 40°С — только 0,6%.

Тепловой баланс охлаждаемого в результате эффекта Пельтье спая определяется уравнением



где П12I — теплота, поглощаемая в спае за счет эффекта Пельтье; I — ток через спай; П12 — коэффициент Пельтье, зависящий от материалов спая; I2R — выделяющаяся в термоэлементе теплота Джоуля, часть которой поступает на холодный спай; G'e (Qнагр — Q0ХЛ) — тепловой поток, обусловленный разностью температур нагреваемого и охлаждаемого спаев;' G'Q — тепловая проводимость термоэлемента;Gе (Qокр — Qохл) — тепловой поток, возникающий в результате теплообмена между, окружающей средой и охлаждаемым спаем.

Как видно из приведенного уравнения, температура холодного спая будет уменьшаться при увеличении тока за счет эффекта Пельтье, в то же время с увеличением тока увеличивается теплота Джоуля, и эффект нагревания при больших токах снижает эффект охлаждения. Поэтому минимальная температура холодного спая достигается при некотором оптимальном токе.

В измерительной технике термопары получили широкое распространение для измерения температур. Кроме того, полупроводниковые термоэлементы используются как обратные тепловые преобразователи, преобразующие электрический ток в тепловой поток.


Таблица 4

Материал

Термо-, ЭДС, мВ

Материал

Термо-ЭДС, мВ

Кремний

+44,8

Свинец

+0,44

Сурьма

+4,7

Олово

+0,42

Хромель

+2,4

Алюминий

+0,40

Нихром

+2,2

Графит

+0,32

Железо

+1,8

Уголь

+0,30

Сплав (90% Pt + 10% Ir)

+1,3

Ртуть

0,00

Молибен

+1,2

Палладий

-0,57

Вольфрам

+0,8

Никель

-1,5

Манганин

+0,76

Алюмель

-1,7

Медь

+0,76

Сплав (60%Au + 30%Pd +

-2,31

Золото

+0,75

10%Pt)


Серебро

+0,72

Константан

-3,4

Иридий

+0,65

Копель

-4,5

Родий

+0,64

Пирит

-12,1

Сплав (90% Pt + 10%Rh)

+0,64

Молибденит

от-69 до-104


Материалы, применяемые для термопар. В табл. 4 приведены термо-ЭДС, которые развиваются различными термоэлектродами в паре с платиной при температуре рабочего спая Q1 = 100 °С и температуре свободных концов Q0 = 0 °С. Зависимость термо-ЭДС от температуры в широком диапазоне температур обычно нелинейна, поэтому данные таблицы нельзя распространить на более высокие температуры.

При конструировании термопар, естественно, стремятся сочетать термоэлектроды, один из которых развивает с платиной положительную, а другой — отрицательную термо-ЭДС. При этом необходимо учитывать также пригодность того или иного термоэлектрода для применения в заданных условиях измерения (влияние на термоэлектрод среды, температуры и т. д.).

Материалы, применяемые в промышленных термопарах, обусловлены ГОСТ 6616—74. Однако используется и ряд специальных термопар, например при измерениях тепловой радиации, для измерений температуры нагревателей в термоанемометрах и вакуумметра, в термоэлементах термоэлектрических амперметров, вольтметров и ваттметров.

Термопары этого типа работают при сравнительно небольших температурах, но для повышения чувствительности преобразователей мощности в температуру должны обладать минимальной теплоемкостью и минимальным коэффициентом теплоотдачи. Поэтому такие термопары выполняются из тонкой проволоки диаметром d  5  10 мкм.



Для повышения выходной ЭДС используется несколько термопар, образующих термобатарею. На рис. 6 показан чувствительный элемент радиационного пирометра. Рабочие спаи термопар расположены на черненом лепестке, поглощающем излучение; свободные концы — на массивном медном кольце, служащем токоотводом и прикрытом экраном. Благодаря массивности и хорошей теплоотдаче кольца температуру свободных концов можно считать постоянной и равной комнатной.

3. УДЛИНИТЕЛЬНЫЕ ТЕРМОЭЛЕКТРОДЫ, ИЗМЕРИТЕЛЬНЫЕ ЦЕПИ, ПОГРЕШНОСТИ ТЕРМОПАР



Удлинительные термоэлектроды. Свободные концы термопары должны находиться при постоянной температуре (рис. 7). Однако не всегда возможно сделать термоэлектроды термопары настолько длинными и гибкими, чтобы ее свободные концы размещались в достаточном удалении от рабочего спая. Кроме того, при использовании благородных металлов делать длинные термоэлектроды экономически невыгодно, поэтому приходится применять провода из другого материала. Соединительные провода А1 и В1 (рис. 7), идущие от зажимов в головке термопары до сосуда объемом V, тем пературу в котором желательно поддерживать постоянной, называют удлинительными термоэлектродами. Далее для соединения с измерительным прибором можно использовать обычные провода.

Чтобы при включении удлиниnельных термоэлектродов из материалов, отличных от материалов основных термоэлектродов, не изменилась термо-ЭДС термопары, необходимо выполнить два условия. Первое — места присоединения удлинительных термоэлектродов к основным термоэлектродам в головке термопары должны иметь одинаковую температуру. И второе — удлинительные термоэлектроды должны быть термоэлектрически идентичны основной термопаре, т. е. иметь ту же термо-ЭДС в диапазоне возможных температур места соединения термоэлектродов в головке термопары (примерно в диапазоне от 0 до 200 °С).

Для термопары платинородий — платина применяются удлинительные термоэлектроды из меди и сплава ТП, образующие термопару, термоидентичную термопаре платинородий — платина в пределах до 150 °С. Для термопары хромель — алюмель удлинительные термоэлектроды изготовляются из меди и константана. Для термопары хромель — копель удлинительными являются основные термоэлектроды, но выполненные в виде гибких проводов.

При неправильном подключении удлинительных термоэлектродов возникает весьма существенная погрешность.

Погрешность, обусловленная изменением температуры свободных концов термопары. Градуировка термопар осуществляется при температуре свободных концов, равной нулю. Если при практическом использовании термоэлектрического термометра температура свободных концов будет отличаться от 0 °С на величину + Q0, то измеренная ЭДС будет меньше и необходимо ввести соответствующую поправку в показания термометра.

Однако следует иметь в виду, что из-за нелинейной зависимости между ЭДС термопары и температурой рабочего спая поправка DQ к показаниям указателя Q', градуированного непосредственно в градусах, не будет равна температуре Q0 свободных концов, что очевидно из рис. 9.



Для определения температуры необходимо воспользоваться градуировочной таблицей для данной термопары, определить ЭДС как Е = Еизм + DЕ (Q0) и затем по скорректированному таким образом значению Е найти Q. Приближенно значение погрешности может быть определено как

DQ = kQ0,

где k — поправочный коэффициент на температуру свободных концов. Значение k различно для каждого участка кривой, поэтому градуировочную кривую разделяют на участки по 100 °С и для каждого участка определяют значение k.

В качестве примера устройства автоматического введения поправки на. температуру свободных концов на рис. 10 схематично показано устройство типа КТ-0,8. В цепь термопары и милливольтметра включен мост, одним из плеч которого является терморезистор RT, помещенный возле свободных концов термопары (остальные плечи моста выполнены из манганиновых резисторов). При температуре в0 мост находится в равновесии и напряжение на его выходной диагонали равно нулю.



При повышении температуры свободных концов сопротивление R, изменяется, мост выходит из равновесия и возникающее напряжение на выходной диагонали моста компенсирует уменьшение термо-ЭДС термопары. Уравновешивание моста при температуре терморезистора, равной нулю, производится изменением сопротивления одного из манганиновых резисторов. Изменение выходного напряжения Uвых моста при температуре терморезистора Q до значения, равного уменьшению термо-ЭДС DЕ, так, чтобы ивых (0) — — АЕ (0) = 0, производится изменением напряжения питания моста, т. е. сопротивления R. Вследствие нелинейности характеристики термопар полной коррекции погрешности при помощи описываемого устройства получить не удается, однако погрешность значительно уменьшается.

Погрешность, обусловленная изменением сопротивления измерительной цепи. В термоэлектрических термометрах для измерения термо-ЭДС применяют как обычные милливольтметры, так и потенциометры с ручным или автоматическим уравновешиванием на предел измерения до 100 мВ.

В тех случаях, когда термо-ЭДС измеряется милливольтметром, может возникнуть погрешность из-за изменения сопротивлений всех элементов, составляющих цепь термо-ЭДС. Измерительная цепь термопары включает в себя рабочие термоэлектроды, удлинительные термоэлектроды и соединительные провода или линию. Сопротивление рабочих термоэлектродов из неблагородных металлов не превышает 1 Ом, сопротивление рабочих термоэлектродов из благородных металлов больше. Кроме того, термоэлектроды, за редким исключением, выполняются из материалов, имеющих относительно высокий ТКС, и при изменении температуры на несколько сотен градусов внутреннее сопротивление термопары существенно возрастает.

Чтобы уменьшить погрешность от падения напряжения на внутреннем сопротивлении термопары, милливольтметры, как правило, градуируются по температуре в комплекте с термопарой с указанием сопротивления линии (обычно 5 Ом), которое подгоняется изменением сопротивления добавочной катушки непосредственно при монтаже прибора. При соблюдении этих условий погрешность возникает при изменении сопротивления термоэлектродов в результате окисления в процессе эксплуатации, при изменении сопротивления термопары при разных глубинах ее погружения, при изменении сопротивления удлинительных термоэлектродов и соединительных проводов в зависимости от темлературы окружающей среды.

4. ТЕРМОРЕЗИСТОРЫ, ОСНОВЫ ИХ РАСЧЕТА И ПРИМЕНЯЕМЫЕ МАТЕРИАЛЫ


Для измерения температур используются терморезисторы из материалов, обладающих высокостабильным ТКС, линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. К таким материалам в первую очередь относится платина. Благодаря своей дешевизне широко распространены медные терморезисторы, применяются также вольфрамовые и никелевые.

Сопротивление платиновых терморезисторов в диапазоне температур от 0 до +650 °С выражается соотношением RQ = R0 (1 + АQ + ВQ2), где R0 — сопротивление при 0 °С; Q— температура, °С. Для платиновой проволоки с отношением R100/Ro = 1,385 значения А = 3,90784·10-3 Кг-1; В = 5,7841-10-7 К-2. В интервале температур от 0 до —200 °С зависимость сопротивления платины от температуры имеет вид RQ = R0 [1 + АQ + ВQ2 + С (Q — 100) Q3], где С = = —4,482-10-12 К-4. Промышленные платиновые термометры согласно ГОСТ 6651—78 используются в диапазоне температур от —260 до + 1100 °С.

Миниатюрные высокоомные платиновые терморезисторы изготовляют путем вжигания или нанесения иным путем платиновой пленки на керамическое основание толщиной 1—2 мм. При ширине пленки 0,1—0,2 мм и длине 5—10 мм сопротивление терморезистора лежит в пределах 200—500 Ом. Такого рода термочувствительные элементы при нанесении пленки с обеих сторон используются для измерения температурного градиента и имеют порог чувствительности (1 ¸ 5)10-5 К/м.

При расчете сопротивления медных проводников в диапазоне температур от —50 до +180 °С можно пользоваться формулой RQ = R0 (1 + aQ), где a = 4,26-10-3 К-1; R0 — сопротивление при 0 °С. Если для медного терморезистора требуется определить сопротивление RQ, (при температуре Q2) по известному сопротивлению RQ1

Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.