Меню
Поиск



рефераты скачать Трех- и четырехволнове рассеяние света на поляритомах и кристаллах ниобата лития с примесями )

                  Глава 3. Четырёхфотонное рассеяние света на поляритонах.

                       §1. Обзор эффектов в нецентросимметричных средах.

            Случай нецентросимметричной среды является наиболее общим при рассмотрении процессов активной спектроскопии. В кристаллах без центра симметрии в интенсивность сигнала активной спектроскопии комбинационного рассеяния (АСКР) дают вклад как прямые четырёхфотонные процессы, так и каскадные трёхволновые процессы, идущие через промежуточные возбуждённые состояния. Эти процессы идут на различных нелинейных восприимчивостях: на кубической и квадратичной соответственно. Вследствие когерентности рассеяния различные вклады не суммируются, а интерферируют. Поэтому они могут приводить к значительным изменениям спектров АСКР: деформации формы линии и появлению дублетной структуры[14]. Детально проанализировано явление интерференции трех- и четырехволнового механизма образования рассеянных волн в работе [15].

            В работе [2] получено возбуждение поляритонной волны методом четырехфотонной спектроскопии в кристалле GaP. Был определен показатель преломления и коэффициент затухания для трех частот поляритонной волны. Однако при расчете коэффициента затухания не учитывались расходимости лучей, немонохроматичность возбуждающих накачек, а также влияние длины взаимодействия на ширину линии рассеяния. Также проводились эксперименты с возбуждением поверхностных поляритонов в кристалле GaP [16].

            При каскадном процессе, состоящем из двух трехволновых взаимодействий, сначала возбуждается поляритонное состояние с волновым вектором равным эффективному возбуждающему, которое может распространяться за пределы области возбуждения. Затем на нём рассеивается пробная волна. В связи с этим генерация сигнала может иметь гораздо большую нелокальность. В работе [17] исследовались пикосекундные поляритонные возбуждения в хлориде аммония. Сначала возбуждался поляритон двумя накачками, а затем пускался пробный луч со сдвигом в пространстве в направлении распространения поляритона и с задержкой во времени. При этом наблюдалось рассеяние на поляритоне вне области его возбуждения. Это позволило измерить групповую скорость поляритона прямым методом, а не через производную . Также было измерено время жизни возбужденного поляритонного состояния.


                           §2. Прямое четырёхфотонное взаимодействие.

            Рассмотрим стоксову компоненту рассеянного излучения (рис.14). Соотношение между частотами для данного случая выполняется в виде:

                                                                         (12)

где L-частота пробного излучения, подаваемого на образец, ws - частота рассеянного на поляритоне излучения. При этом для наблюдения эффективного прямого процесса должно выполняться условие пространственного синхронизма:

                                                                            (13)

            Приведем выражение для интенсивности сигнальной волны с частотой s [18]:

               ,                   (14)

IL, I, I-интенсивность волн с частотами wL, и , - расстройка волновых векторов, l -длина взаимодействия в кристалле. Численный коэффициент, зависящий от симметрии кристалла, здесь и далее опущен. В эффективную кубическую восприимчивость входят кубические восприимчивости прямого и каскадного процессов: .. В свою очередь восприимчивость прямого процесса делится на резонансную и нерезонансную части: . В частности, резонансная часть кубической восприимчивости в однорезонансном приближении составляет:

                      ,                         (15)

где  - производная чисто электронной поляризуемости в равновесном положении ядер, N, M - концентрация и масса ядер соответственно. В последнем выражении , где wph - фононная частота, Г- коэффициент, описывающий затухание (полуширина на полувысоте фононной линии рассеяния). Резонансная восприимчивость возрастает при приближении разностной частоты к частоте фонона.



           

                                  Рис.14. Прямой четырехфотонный процесс.


                                     §3. Каскадные трехволновые процессы.

            В четырехфотонные процессы в нецентросимметричных кристаллах вносят свой вклад каскадные трехволновые процессы (рис.15). В данном случае создается повышенная (по сравнению с равновесной) населённость поляритонных состояний “разогревающими” лучами с частотами w1, w2. Каскадному когерентному рассеянию соответствует частное решение неоднородного волнового уравнения, в правой части которого стоит нелинейная поляризация, возбуждённая “разогревающими” лучами. Кроме соотношений (12) и (13), в данном случае необходимо выполнение ещё одного условия пространственного синхронизма:

                                                                                                    (16)

           

                               Рис.15. Каскадный трехволновый процесс.

            Такой процесс является когерентным, потому что происходит рассеяние пробной волны непосредственно на возбуждении с волновым вектором . Каскадная восприимчивость третьего порядка когерентного процесса задаётся выражением:

                                                           (17)

            Знаменатель этого выражения указывает на то, что на интенсивность в выражении (14) влияет еще одна расстройка волновых векторов: . Процессы с возбуждением поляритонного состояния и последующего рассеяния на нем  происходят как два трехволновых процесса на квадратичной восприимчивости c(2) [19]. Квадратичная восприимчивость тоже делится на резонансную и нерезонансную части. Нерезонансная составляющая  где - квадратичная поляризуемость, а резонансная составляющая:

                                       (16)

- дипольный момент молекулы.

            Вклады от прямого четырехфотонного процесса, идущего на кубической нелинейности, и от двухступенчатых трехволновых процессов могут быть соизмеримы. Используя различия в условиях фазового синхронизма, можно разделять прямые и каскадные процессы.

§4. Экспериментальная установка для наблюдения четырехфотонного рассеяния света на поляритонах.

            В большинстве выполненных ранее работ использовалась традиционная схема КАРС-спектроскопии, в которой одна из накачек является дважды вырожденной с точки зрения процесса четырехволнового смешения, и регистрация сигнала ведется на антистоксовой частоте. В данном случае использовался наиболее общий вариант четырехволнового взаимодействия, в котором все волны имеют разные частоты и регистрируется стоксова компонента рассеянного излучения. Схема экспериментальной установки приведена на рис.16. Источниками волн возбуждающего излучения с частотами w1 и w2 служат YAG:Nd+3-лазер и перестраиваемый лазер на кристалле  , имеющие длины волн генерации l1=1,064 мкм и l2 в интервале 1,08-1,22 мкм соответственно и работающие с частотой повторения 1-33 Гц. Накачкой для перестраиваемого лазера на кристалле с центрами окраски служит излучение основной гармоники YAG:Nd+3-лазера, прошедшее через YAG:Nd+3-усилитель и поляризационную призму Глана-Томсона ПГ1. В качестве зондирующей волны используется излучение второй гармоники YAG:Nd+3-лазера (длина волны lL=532 нм), генерируемой удвоителем частоты ГВГ, которое отделяется от излучения основной гармоники при помощи зеркала с селективным по частоте коэффициентом отражения. Благодаря использованию источников ближнего ИК диапазона для возбуждения поляритонной волны, паразитные засветки, вызванные люминесценцией исследуемой среды под действием их излучения, попадают в ИК диапазон, далекий от области регистрации сигнала, лежащей в видимой части спектра. Необходимая поляризация лучей, падающих на кристалл, определяется поляризационными призмами Глана-Томсона ПГ1 и ПГ2. Углы падания лучей накачки на исследуемый кристалл задаются системой зеркал З2-З4. Кроме того, введение в лучи накачек дополнительных фокусирующих линз Л1-Л3 позволяет варьировать значение плотности мощности накачек в области их взаимодействия и их угловую расходимость. Рассеянное излучение собирается трехлинзовой системой ЛС в плоскости входной щели спектрографа СП, пройдя предварительно через поляризационную призму Глана-Томсона ПГ3, служащую анализатором рассеянного излучения и отсекающую прошедшее через образец О излучение пробной волны.

            На выходе спектрографа формировалась двумерная частотно-угловая картина рассеяния. Отклонение луча по горизонтали соответствовало частоте рассеянной волны, по вертикали - углу рассеяния в плоскости волновых векторов накачек. Устройство кассетной части спектрографа позволяет проводить как фотографическую, так и электронную регистрацию сигнала. В последнем случае приемником сигнала служит ФЭУ2, работающий в аналоговом режиме. Его сигнал через широкополосный усилитель с регулируемым коэффициентом передачи поступает в быстродействующий стробируемый АЦП интегрирующего типа, входящий в состав крейта КАМАК и далее в управляющую ЭВМ типа IBM PC/AT. Управляющая ЭВМ посредством блоков, входящих в состав крейта КАМАК, осуществляет синхронизацию и управление работой отдельных узлов установки. В настоящем варианте установки, при фотоэлектронной регистрации спектра, ФЭУ был неподвижен, и перед ним была помещена щель переменной ширины с микрометрическим винтом. Сканирование спектра по частоте осуществлялось путем поворота призменной части спектрографа шаговым двигателем ШД1. Другой двигатель ШД2 служит для поворота кристалла в плоскости, содержащей все лучи накачек, что дает возможность изменять расстройку фазового синхронизма в образце. Дополнительный фотоприемник ФЭУ1 служит для контроля мощности накачки. Использование прерывателя пробного луча ПЛ позволяет автоматически вычитать фон, связанный с засветкой фотоприемника излучением суммарной частоты двух инфракрасных лазеров. Оптическая схема установки ориентирована на регистрацию стоксовой компоненты рассеянного излучения. Это позволяет легко переходить от наблюдения спонтанного трехфотонного рассеяния света на поляритонах к наблюдению рассеяния на когерентно возбужденных состояниях среды простым включением ИК накачек, поскольку в обоих случаях рассеянное излучение лежит в одном частотно-угловом интервале.





Глава 4. Исследование характеристик кристаллов методом активной спектроскопии.

            Четырехволновое рассеяние света возбуждалось в кристаллах ниобата лития, легированных магнием Mg:LiNbO3 c концентрацией примеси Мg 0.68масс.% и 0.79масс.% (кристаллы No.4,5). Данные по показателям преломления в видимой и ближней ИК области для кристалла No.4 были получены путем интерполяции данных для кристаллов No.3,5. В эксперименте возбуждался поляритон в окрестностях частот 541см-1, 550см-1, 558.5см-1, 560см-1. Для этого для каждого выбранного значения частоты поляритона wP устанавливается частота генерации перестраиваемого лазера w2 в соответствии со вторым уравнением из (12). Затем лучи ИК накачек направлялись на кристалл под фиксированными углами q1 и q2 к направлению распространения зондирующей накачки. Далее измерялась зависимость интенсивности сигнала на частоте wS=wL-w1+w2 от угла поворота кристалла a в плоскости волновых векторов накачек.

Спектральные ширины линий накачек составляли приблизительно 1см-1 для излучения основной и второй гармоник YAG:Nd+3-лазера и не более 6см-1 для перестраиваемого лазера. Ширины линий рождавшегося сигнального излучения полностью соответствовали частотной структуре накачек. Пиковая мощность накачек на входе в кристалл: пробной волны ~0.25 Мвт, первого возбуждающего луча ~0.05 Мвт, второго возбуждающего луча ~0.01 Мвт. В эксперименте использовались накачки с частотами wL и w1 с необыкновенной поляризацией, излучение перестраиваемого -лазера имело обыкновенную поляризацию. Величина интенсивности сигнала четырехфотонного рассеяния при точной настройке углового синхронизма существенно - почти на 4 порядка - превышала интенсивность спонтанного трехволнового рассеяния. При этом сигнал спонтанного рассеяния собирался со всей длины образца ~1 см, а сигнал четырехфотонного рассеяния - лишь с области пересечения лучей накачек длиной ~0,5-1мм.

Для каждой фиксированной сигнальной (а, значит, и поляритонной) частоты область решений условий точного синхронизма в пространстве углов a, q1 и q2 представляет собой участок кривой. С учетом возможной расстройки синхронизма эта кривая должна размываться. Для каждой разности частот w1-w2=wP была проведена серия измерений формы линии Is(a), в которой взаимная ориентация зондирующей волны и одной из ИК накачек оставалась постоянной на входе кристалла, а угол падения другой ИК накачки менялся от постанова к постанову. Типичный вид отдельной формы линии рассеяния приведен на рис.17. На нижней оси абсцисс отложена расстройка пространственного синхронизма прямого процесса, на верхней оси абсцисс отложен угол поворота кристалла. Линия рассеяния имеет один ярко выраженный максимум с угловой шириной порядка 0.50, в единицах волновых расстроек - 600 см-1 . Однако, по ширине этой линии нельзя определить величину поглощения, так как существенна расходимость лучей. Было проверено, что при уменьшении расходимости первого возбуждающего луча уменьшается ширина линии рассеяния. Также в интенсивность сигнала складывается рассеяние на соседних частотах с определенной расстройкой, так как возбуждается поляритон с частотной шириной порядка 5 см-1. Каждая серия подобных измерений формы линии Is(a), снятая при фиксированном угле q2 и переменном угле q1, представляла собой распределение Is(a,q1).

На верхнем графике рис.18 на плоскости координат угол поворота кристалла a - угол падения ИК волны q1 представлены результаты измерений для одной серии, в рамках которой сохранялись постоянными угол падения q2=410 и центральная частота генерации w2 перестраиваемого ИК лазера, при которой возбуждается поляритон на частоте np=541 см-1. Точками отмечены положения максимумов экспериментально наблюдавшихся кривых Is(a). Размер вертикальных штрихов соответствует ширинам максимумов. На нижнем графике рис.18 представлена интенсивность рассеянного излучения в максимуме при каждом положении угла q1. При прохождении этой серии измерений при углах заведения первого “разогревающего” луча q1=600-680, последовательно возбуждался поляритон на частотах np=539-543 см-1. Наблюдалось увеличение интенсивности рассеянной волны при q1=640-650, так как интенсивность второго “разогревающего” луча имеет максимум на частоте, соответствующей частоте поляритона np=541 см-1. Зная взаимную ориентацию и длины волновых векторов  , можно определить из уравнений (13) и (16) длину волнового вектора и показатель преломления поляритона. Основную ошибку в точность измерения показателя преломления вносит ширина линии генерации перестраемого лазера.

На графиках рис.19 представлены результаты серии измерений для угла q2=29.50 и центральной частоты генерации w2 перестраиваемого ИК лазера, при которой возбуждается поляритон на частоте np=550 см-1. В данном случае наблюдается максимальная интенсивность сигнальной волны при угле q1=570, это говорит о том, что при этом угле возбуждается поляритон на частоте np=550 см-1. На рис.20 представлены перестроечные кривые серии измерений для двух кристаллов с концентрацией примеси магния 0.68масс.% и 0.79масс.% для угла q2=18.50. При этом возбуждается поляритон в окрестности частоты np=560 см-1. Очевидно отличие в перестроечных кривых и в положении максимума интенсивности рассеянной волны для двух кристаллов. На рис.21 представлена перестроечная кривая серии измерений для кристалла с концентрацией примеси магния 0.41масс.% для угла q2=00. Этот кристалл имеет отличное от двух предыдущих кристаллов направление оси Z, поэтому необходимы другие значения углов заведения лучей, чтобы возбудить такую же частоту поляритона. Аналогично можно определить показатель преломления поляритона для этих трех образцов кристаллов на частоте  np=560 см-1.

Полученные с помощью четырехволновой методики значения обыкновенного показателя преломления на частоте 560 см-1 для кристаллов с различной концентрацией магния равны: no(0.41масс.%Mg)=6.53, no(0.68масс.%Mg)=6.37, no(0.79масс.%Mg)=6.2. Основную долю в погрешность измерения no вносит точность измерения частоты перестраемого лазера и частотная ширина его генерации. Однако, при фиксированной частоте поляритона точность измерения частоты перестраемого лазера на ошибку величины изменения показателя преломления не влияет. Поэтому в данном случае ошибка измерения изменения показателя преломления в зависимости от концентрации примеси не превышает ±0.02. Таким образом, мы можем сказать, что на верхнем фононном поляритоне проявляется аналогичная зависимость, как и в видимом диапазоне: при увеличении концентрации примеси показатель преломления падает.







                     Рис.17. Форма линии рассеяния при повороте кристалла.

 

Рис.18. Перестроечная кривая a(q1) и интенсивность рассеянного излучения I(q1) при угле падения q2=410 и возбуждении поляритона в окрестности частоты np=541см-1 для кристалла ниобата лития с концентрацией примеси магния 0.68масс.%.

Рис.19. Перестроечная кривая a(q1) и интенсивность рассеянного излучения I(q1) при угле падения q2=29,50 и возбуждении поляритона в окрестности частоты np=550 см-1 для кристалла ниобата лития с концентрацией примеси магния 0.68масс.%.

Рис.20. Перестроечная кривая a(q1) и интенсивность рассеянного излучения I(q1) при угле падения q2=18,50 и возбуждении поляритона в окрестности частоты np=560 см-1 для кристаллов ниобата лития с концентрацией примеси магния:

0.68масс.%       l; 0.79масс.%     n.

Рис.21. Перестроечная кривая a(q1) и интенсивность рассеянного излучения I(q1) при угле падения q2=00 и возбуждении поляритона в окрестности частоты np=560см-1 для кристалла ниобата лития с концентрацией примеси магния 0.41масс.%.


Рис.22. Дисперсия поляритонов, измеренная по трехволновой и четырехволновой методике для кристаллов ниобата лития с концентрацией примеси магния:

0.41масс.%        s; 0.68масс.%       l; 0.79масс.%     Ž.

.

                                                            Заключение.

            В работе исследовались кристаллы ниобата лития с различной концентрацией магния. При этом использовались метод спонтанного параметрического рассеяния и четырехволновое смешение.

1. Получены зависимости показателей преломления в видимом и ближнем инфракрасном диапазоне от концентрации примеси магния. Концентрация примеси магния менялась в пределах 0-1%.

2. Обнаружено аномальное поведение необыкновенного показателя преломления в полидоменном кристалле.

3. Наблюдалась нелинейная дифракция при спонтанном параметрическом рассеянии в полидоменном кристалле. Определен период доменной структуры в полидоменном кристалле методом СПР.

4. Получены дисперсии обыкновенного показателя преломления на поляритонных частотах для кристаллов с различной концентрацией примеси методом СПР. Однако, этот метод не позволил обнаружить отличия дисперсионных характеристик кристаллов в дальней инфракрасной области.

5. Измерен обыкновенный показатель преломления на поляритоне фонона 580 см-1 для трех концентраций примеси магния методом четырехволнового смешения. Этот метод дает гораздо большую точность, что позволило обнаружить разницу в показателе преломления для кристаллов с различной концентрацией примеси магния.

6. Разработана методика четырехволнового смешения на когерентно возбуждаемых поляритонах.

                                                    Список литературы.

1.  Д.Н.Клышко. Фотоны и нелинейная оптика, Наука, М., 1980 г.

2.  J.P.Coffinet and F. De Martini. Phys.Rev.Lett. vol.22, №2, pp.60-64 (1969).

3. Д.Н.Клышко. Письма в ЖЭТФ, 6, 490, 1967.

4. Д.Н.Клышко, В.Ф.Куцов, А.Н.Пенин, Б.Ф.Полковников. ЖЭТФ, 62,

1846, 1972.

5. Ф.Цернике, Д.Мидвинтер. ”Прикладная нелинейная оптика”. “Мир”; М.; 1976.

6. А.Л.Александровский, Г.Х.Китаева, С.П.Кулик, А.Н.Пенин. “Нелинейная дифракция при параметрическом рассеянии света”.ЖЭТФ, 63, 613-615, 1986.

7. А.Л.Александровский, П.Посмыкевич, И.А.Яковлев. ФТТ, 25, 1199, 1983.

8. A.L.Aleksandrovski, I.I.Naumova, V.V.Tarasenko. Ferroelectrics, 141, 147-152, 1993.

9. А.Л.Александровский, О.А.Глико, И.И.Наумова, В.И.Прялкин. “Линейная и нелинейная дифракционные решетки в монокристаллах ниобата лития с периодической доменной структурой”. Квантовая электроника, т.23, №7, с. 1-3, 1996.

10. А.Л.Александровский, Г.И.Ершова, Г.Х.Китаева, С.П.Кулик, И.И.Наумова, В.В. Тарасенко.”Дисперсия показателей преломления в кристаллах LiNbO3:Mg и LiNbO3:Y”. Квантовая электроника, 18, 254-256, фев., 1991.

11. Г.М.Георгиев, Г.Х.Китаева, А.Г.Михайловский, А.Н.Пенин, Н.М.Рубинина. Физ. Тверд. Тела (Ленинград), 16, 3524, 1974.

12. Д.Н.Клышко, А.Н.Пенин, Б.Ф.Поливанов. “Параметрическая люминисценция и рассеяние света на поляритонах”. Письма в ЖЭТФ, 2, 11-14, 1970.

13. Winter F.X, Claus R. Optic Communication, 6, 22-25, 1972.

14. Ю.Н.Поливанов, А.Т.Суходольский. “Наблюдение интерференции прямых и каскадных процессов при активной спектроскопии поляритонов”. Письма в ЖЭТФ, 25, 240-244, 1977.

15. В.Л.Стрижевский, Ю.Н.Яшкир. . Квантовая электроника, т.2, №5, стр.995, 1975.

16. F.DeMartini, G.Giuliani, P.Mataloni, E.Palange and Y.R.Shen. Phys.Rev.Lett. vol.37, №7, pp.440-443, 1976.

17. G.M.Gale, F.Vallee, and C.Flitzanis. Phys.Rev.Lett. vol.57, №15, pp.1867-1870, 1986.

18. Ахманов С.А., Коротеев Н.И. “Методы нелинейной оптики в спектроскопии рассеяния света”. с. 38, 1981.

19. Д.Н.Клышко. Квантовая электроника, т. 2, 2, c. 265-271,1974.


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.