Лучше применять светопроводы с
большим радиусом кривизны. Светопроводы позволяют также сочленять сцинтилляторы
и ФЭУ разных диаметров. При этом используются конусообразные светопроводы.
Сочленение ФЭУ с жидким сцинтиллятором производится либо через светопровод,
либо непосредственным контактом с жидкостью. На рис.6 приведен пример сочленения ФЭУ с
жидким сцинтиллятором. В различных режимах работы на ФЭУ подается напряжение
от 1000 до 2500в. Так как коэффициент усиления ФЭУ очень резко зависит
от напряжения, то источник питающего тока должен быть хорошо стабилизирован.
Кроме того, возможно осуществление самостабилизации.
Питание ФЭУ производится с помощью
делителя напряжения, который позволяет подавать на каждый электрод
соответствующий потенциал. Отрицательный полюс источника питания подключается к
фотокатоду и к одному из концов делителя. Положительный полюс и другой конец делителя заземляются.
Сопротивления делителя подбираются таким образом, чтобы был осуществлен
оптимальный режим работы ФЭУ. Для большей стабильности ток через делитель
должен на порядок превышать электронные токи, идущие через ФЭУ.
Рис. 6. Сочленение ФЭУ с жидким
сцинтиллятором.
1—жидкий
сцинтиллятор;
2—ФЭУ;
3—светозащитный кожух.
При работе сцинтилляционного счетчика в импульсном режиме на
выходе ФЭУ возникают короткие (~10-8 сек) импульсы, амплитуда
которых может составлять несколько единиц или несколько десятков вольт. При
этом потенциалы на последних динодах могут испытывать резкие изменения, так как
ток через делитель не успевает восполнить заряд, уносимый с каскада
электронами. Чтобы избежать таких колебаний потенциалов, несколько последних
сопротивлений делителя шунтируются емкостями. За счет подбора потенциалов на
динодах создаются благоприятные условия для сбора электронов на этих динодах,
т.е. осуществляется определенная электроннооптическая система, соответствующая
оптимальному режиму.
В электроннооптической системе
траектория электрона не зависит от пропорционального изменения потенциалов на
всех электродах, образующих данную электроннооптическую систему. Так и в
умножителе при изменении напряжения питания изменяется лишь коэффициент
усиления его, но электроннооптические свойства остаются неизменными.
При непропорциональном изменении
потенциалов на динодах ФЭУ условия фокусировки электронов на участке, где
нарушена пропорциональность, изменяются. Это обстоятельство и используется для
самостабилизации коэффициента усиления ФЭУ. Для этой цели потенциал
Рис. 7. Часть схемы делителя.
одного из динодов по
отношению к потенциалу предыдущего динода задается постоянным, либо с помощью
дополнительной батареи, либо с помощью дополнительно стабилизированного
делителя. На рис.7 приведена часть схемы
делителя, где между динодами D5 и D6 включена дополнительная
батарея (Uб = 90 в). Для получения
наилучшего эффекта самостабилизации необходимо подобрать величину
сопротивления R'. Обычно R' больше R в 3— 4 раза.
§ 5. Свойства сцинтилляционных счетчиков
Сцинтилляционные счетчики обладают
следующими достоинствами.
Высокая разрешающая
способность по времени. Длительность импульса в зависимости от используемых
сцинтилляторов простирается от 10-6 до 10-9 сек,
т.е. на несколько порядков меньше, чем у счетчиков с самостоятельным разрядом,
что позволяет осуществлять намного большие скорости счета. Другой важной
временной характеристикой сцинтилляционных счетчиков является малая величина
запаздывания импульса после прохождения регистрируемой частицы через фосфор (10-9—10-8
сек). Это позволяет использовать схемы совпадений с малым разрешающим
временем (<10-8 сек) и, следовательно, производить измерения совпадений при много больших
нагрузках по отдельным каналам при малом числе случайных совпадений.
Высокая эффективность
регистрации g-лучей и нейтронов. Для регистрации g-кванта или нейтрона
необходимо, чтобы они прореагировали с веществом детектора; при этом возникшая
вторичная заряженная частица должна быть зарегистрирована детектором. Очевидно,
что чем больше находится вещества на пути g-лучей или нейтронов, тем
большей будет вероятность их поглощения, тем большей будет эффективность их
регистрации. В настоящее время при использовании больших сцинтилляторов
добиваются эффективности регистрации g-лучей в несколько десятков
процентов. Эффективность регистрации нейтронов сцинтилляторами со специально
введенными веществами (10В, 6Li и др.) также намного
превышает эффективность регистрации их с помощью газоразрядных счетчиков.
Возможность энергетического анализа регистрируемого
излучения. В самом деле, для легких заряженных частиц (электроны) интенсивность
вспышки в сцинтилляторе пропорциональна энергии, потерянной частицей в этом
сцинтилляторе.
С помощью сцинтилляционных счетчиков, присоединенных к
амплитудным анализаторам, можно изучать спектры электронов и g-лучей. Несколько хуже
обстоит дело с изучением спектров тяжелых заряженных частиц (a-частицы и др.), создающих в
сцинтилляторе большую удельную ионизацию. В этих случаях пропорциональность
интенсивности вспышки потерянной энергии наблюдается не при всяких энергиях
частиц и проявляется только при значениях энергии, больших некоторой величины.
Нелинейная связь амплитуд импульсов с энергией частицы различна для различных
фосфоров и для различных типов частиц. Это иллюстрируется графиками на рис.1 и 2.
Возможность изготовления сцинтилляторов очень больших
геометрических размеров. Это означает возможность регистрации и энергетического
анализа частиц очень больших энергий (космические лучи), а также частиц, слабо
взаимодействующих с веществом (нейтрино).
Возможность введения в состав сцинтилляторов веществ, с
которыми с большим сечением взаимодействуют нейтроны. Для регистрации
медленных нейтронов используют фосфоры LiJ(Tl), LiF, LiBr. При взаимодействии медленных нейтронов с 6Li идет реакция 6Li(n,a)3Н, в которой выделяется энергия в 4,8 Мэв.
§ 6. Примеры использования сцинтилляционных счетчиков
Измерение времен жизни возбужденных
состояний ядер. При радиоактивном распаде или в различных ядерных реакциях
образующиеся ядра часто оказываются в возбужденном состоянии. Изучение
квантовых характеристик возбужденных состояний ядер является одной из главных
задач ядерной физики. Очень важной характеристикой возбужденного состояния
ядра является время его жизни t.
Знание этой
величины позволяет получать многие сведения о структуре ядра.
Атомные ядра могут находиться в
возбужденном состоянии различные времена. Для измерения этих времен существуют
различные методы. Сцинтилляционные счетчики оказались очень удобными для
измерения времен жизни уровней ядер от нескольких секунд до очень малых долей
секунды. В качестве примера использования сцинтилляционных счетчиков мы
рассмотрим метод задержанных совпадений. Пусть ядро A (см. рис.10) путем b-распада превращается в ядро В
в возбужденном состоянии, которое избыток своей энергии отдает на
последовательное испускание двух g-квантов (g1,g2). Требуется определить время
жизни возбужденного состояния I.
Препарат, содержащий изотоп A, устанавливается между двумя счетчиками с
кристаллами NaJ(Tl) (рис.8). Импульсы, возникшие на выходе ФЭУ, подаются
на схему быстрых совпадений с разрешающим временем ~10-8—10-7 сек. Кроме того,
импульсы подаются на линейные усилители и далее на амплитудные анализаторы.
Последние настраиваются таким образом, что они пропускают импульсы определенной
амплитуды. Для нашей цели, т.е. для цели измерения времени жизни уровня I (см. рис. 10), амплитудный анализатор AAI должен пропускать только импульсы,
соответствующие энергии квантов g1 а анализатор AAII
— g2.
Рис.8. Принципиальная схема для
определения
времени жизни возбужденных состояний ядер.
Далее импульсы с
анализаторов, а также с быстрой схемы совпадений подаются на медленную (t~10-6 сёк) схему тройных совпадений. В эксперименте изучаются зависимость числа
тройных совпадений от величины временной задержки импульса, включенной в первый
канал схемы быстрых совпадений. Обычно задержка импульса осуществляется с
помощью так называемой переменной линии задержки ЛЗ (рис.8).
Линия задержки должна включаться
именно в тот канал, в котором регистрируется квант g1, так как он испускается раньше кванта g2. В результате эксперимента строится
полулогарифмический график зависимости числа тройных совпадений от времени
задержки (рис.9), и уже по нему определяется
время жизни возбужденного уровня I (так же, как это делается при определении периода полураспада с помощью
одиночного детектора).
Используя сцинтилляционные счетчики с
кристаллом NaJ(Tl) и рассмотренную схему
быстро-медленных совпадений, можно измерять времена жизни 10-7—10-9 сек. Если же
использовать более быстрые органические сцинтилляторы, то можно измерять и
меньшие времена жизни возбужденных состояний (до 10-11 сек).
Рис.9. Зависимость числа совпадений от
величины задержки.
Гамма-дефектоскопия. Ядерные излучения, обладающие большой
проникающей способностью, все чаще применяются в технике для обнаружения
дефектов в трубах, рельсах и других больших металлических блоках. Для этих
целей используется источник g-излучения и детектор g-лучей. Наилучшим детектором в этом
случае является сцинтилляционный счетчик, обладающий большой эффективностью
регистрации. Источник излучения помещается в свинцовый контейнер, из которого
через коллиматорное отверстие выходит узкий пучок g-лучей, освещающий трубу. С
противоположной стороны трубы устанавливается сцинтилляционный счетчик.
Источник и счетчик помещаются на подвижный механизм, позволяющий передвигать их
вдоль трубы, а также поворачивать около ее оси. Проходя через материал трубы,
пучок g-лучей
будет частично поглощаться; если труба однородна, поглощение будет всюду
одинаковым, и счетчик будет всегда регистрировать одно и то же число (в
среднем) g-квантов в единицу времени, если же в каком-то месте трубы имеется
раковина, то g-лучи в этом месте будут поглощаться меньше, скорость счета увеличится.
Местоположение раковины будет обнаружено. Примеров подобного использования
сцинтилляционных счетчиков можно привести много.
Экспериментальное обнаружение нейтрино. Нейтрино — самая загадочная
из элементарных частиц. Практически все свойства нейтрино получены из косвенных
данных. Современная теория b-распада предполагает, что масса нейтрино mn равна нулю. Некоторые эксперименты
позволяют утверждать, что . Спин нейтрино равен 1/2,
магнитный момент <10-9
магнетона Бора. Электрический заряд равен нулю. Нейтрино может преодолевать
огромные толщи вещества, не взаимодействуя с ним. При радиоактивном распаде
ядер испускаются два сорта нейтрино. Так, при позитронном распаде ядро
испускает позитрон (античастица) и нейтрино (n-частица). При электронном
распаде испускается электрон
(частица) и антинейтрино (`n-античастйца).
Создание ядерных реакторов, в которых образуется очень
большое количество ядер с избытком нейтронов, вселило надежду на обнаружение
антинейтрино. Все нейтронноизбыточные ядра распадаются с испусканием
электронов, а следовательно, и антинейтрино. Вблизи ядерного реактора
мощностью в несколько сотен тысяч киловатт поток антинейтрино составляет 1013
см-2·сек-1 — поток огромной плотности, и
при выборе подходящего детектора антинейтрино можно было попытаться их
обнаружить. Такая попытка была осуществлена Рейнесом и Коуэном в 1954 г. Авторы
использовали следующую реакцию:
n + p ® n + e+ (1)
этой реакции
частицами-продуктами являются позитрон и нейтрон, которые могут быть
зарегистрированы.
Детектором и одновременно водородной
мишенью служил жидкий сцинтиллятор, объемом ~1м3, с высоким
содержанием водорода, насыщенный кадмием. Позитроны, возникающие в реакции (1), аннигилировали в два g-кванта с энергией 511 кэв
каждый и обусловливали появление первой вспышки сцинтиллятора. Нейтрон в
течение нескольких микросекунд замедлялся и захватывался кадмием. При этом
захвате кадмием испускалось несколько g-квантов с суммарной энергией около 9
Мэв. В результате в сцинтилляторе возникала вторая вспышка. Измерялись
запаздывающие совпадения двух импульсов. Для регистрации вспышек жидкий
сцинтиллятор окружался большим количеством ФЭУ.
Скорость счета запаздывающих
совпадений составляла три отсчета в час. Из этих данных было получено, что
сечение реакции ( рис. 1) s = (1,1 ± 0,4)10-43см2, что близко к расчетной
величине.
В настоящее время жидкостные
сцинтилляционные счетчики очень больших размеров используются во многих
экспериментах, в частности в экспериментах по измерению потоков g-излучений, испускаемых
человеком и другими живыми организмами.
Регистрация осколков деления. Для регистрации
осколков деления оказались удобными газовые сцинтилляционные счетчики.
Обычно эксперимент по изучению
сечения деления ставится следующим образом: слой изучаемого элемента наносится
на какую-то подложку и облучается потоком нейтронов. Конечно, чем больше будет
использоваться делящегося вещества, тем больше будет происходить актов деления.
Но так как обычно делящиеся вещества (например, трансурановые элементы) являются a-излучателями, то
использование их в значительных количествах становится затруднительным из-за
большого фона от a-частиц. И если акты деления изучаются с помощью импульсных ионизационных
камер, то возможно наложение импульсов от a-частиц на импульсы,
возникшие от осколков деления. Только прибор, обладающий лучшим временным
разрешением, позволит использовать большие количества делящегося вещества без
наложения импульсов друг на друга. В этом отношении газовые сцинтилляционные
счетчики обладают значительным преимуществом по сравнению с импульсными
ионизационными камерами, так как длительность импульсов у последних на 2—3
порядка больше, чем у газовых сцинтилляционных счетчиков. Амплитуды импульсов
от осколков деления много больше, чем от a-частиц и поэтому могут быть легко
отделены с помощью амплитудного анализатора.
Очень важным свойством
газового сцинтилляционного счетчика является его низкая чувствительность к g-лучам, так как часто
появление тяжелых заряженных частиц сопровождается интенсивным потоком g-лучей.
Люминесцентная камера. В 1952 г. советскими
физиками Завойским и другими впервые было произведено фотографирование следов
ионизирующих частиц в люминесцирующих веществах с помощью чувствительных
электроннооптических преобразователей (ЭОП). Этот метод регистрации частиц,
названный люминесцентной камерой, имеет высокую разрешающую способность по
времени. Первые опыты были произведены при использовании кристалла CsJ (Tl).
В дальнейшем для изготовления
люминесцентной камеры стали использовать пластмассовые сцинтилляторы в виде
длинных тонких стерженьков (нитей). Нити укладываются в виде стопки рядами так,
что нити в двух соседних рядах расположены под прямым углом друг к другу. Этим
обеспечивается возможность стереоскопического наблюдения для воссоздания
пространственной траектории частиц. Изображения от каждой из двух групп
взаимно перпендикулярных нитей направляются на отдельные электроннооптические
преобразователи. Нити играют также роль светопроводов. Свет дают только те
нити, которые пересекает частица. Этот свет выходит через торцы соответствующих
нитей, которые фотографируются. Изготовляются системы с диаметром отдельных
нитей от 0,5 до 1,0 мм.
Литература:
1.
Дж.Биркс.
Сцинтилляционные счетчики. М., ИЛ, 1955.
2.
В.О.Вяземский,
И.И. Ломоносов, В.А. Рузин. Сцинтилляционный метод в радиометрии.
М.,Госатомиздат, 1961.
3.
Ю.А.
Егоров. Стинцилляционный метод спектрометрии гамма излучения и быстрых нейтронов.
М., Атомиздат, 1963.
4.
П.А.
Тишкин. Эксперементальные методы ядерной физики(детекторы ядерных излучений).
Издательство
Ленинградского Университета, 1970.
5 Г.С. Ландсберга.
Элементарный учебник физики ( том 3).М., Наука , 1971
Страницы: 1, 2, 3
|