Меню
Поиск



рефераты скачать Создание электрической подстанции "Шершнёвская" ЗАО "Лукойл-Пермь"

Электрооборудование насосных установок, из-за широкого применения искусственного способа поддержания пластового давления на нефтепромыслах, является одним из главных потребителей электроэнергии. Насосные установки, преимущественно, центробежного типа. Малые габариты, возможность непосредственного соединения с электродвигателем, простота конструкции, отсутствие клапанов, плавная и непрерывная подача воды без гидравлических ударов – обеспечивает целесообразность использования центробежных насосов.

Для поддержания пластового давления предполагается установить блочную кустовую насосную станцию (БКНС), оборудованную тремя центробежными насосными установками (одна из которых выведена в резерв). Электропривод будет оснащен синхронными двигателями типа СТД-1600, рабочее напряжение 6кВ, мощность 1600кВт. БКНС относится ко второй группе потребителей электроэнергии нефтепромысла /15/.

Мощным потребителем электроэнергии на месторождении также будет является дожимная насосная станция, с центробежными насосными агрегатами перекачивающая собранную на месторождении жидкость на пункт предварительной подготовки нефти.

Дожимная насосная станция будет оборудована двумя центробежными насосными установками с электродвигателями (серии ВАО), мощностью 250кВт каждый.

А так как сырая нефть относится к группе взрывоопасных смесей категории 1А, то по правилам изготовления взрывозащищенного оборудования, электропривод станций выполняется взрывозащищенным (серии ВАО) и вся электрическая коммутационная аппаратура двигателей должна быть удалена на безопасное расстояние от установки и обычно выполняется в общепромышленном исполнении.

Основные электроприемники Шершнёвского месторождения приведены в таблице 2.1.


2.2 Определение электрических нагрузок


Эксплуатация энергосистем месторождений нефти показывает, что все группы электроприемников работают в длительных режимах, редко отключаются, а если и отключаются, то в основном сразу включаются резервные агрегаты. Это относится как к станции заводнения, так и к дожимным насосным станциям и добывающим насосам на скважинах.

Для оценки расчетной мощности электроприёмников промысла, точнее самых ответственных и мощных групп приёмников, воспользуемся методом определения расчетных нагрузок по установленной мощности и коэффициенту спроса. Основными достоинствами этого метода является: простота и достаточно высокая степень достоверности полученного результата /4/.

Используя таблицу электрических нагрузок (табл.2.1.) определим расчетные нагрузки для однородных по режиму работы приемников по выражениям:



Рном, - номинальная мощность приемника;

Рр, - активная расчетная мощность;

Qp, - реактивная расчетная мощность;

Sр, - полная расчетная мощность;

Кс, - коэффициент спроса принимаем по данным практики;

tgφ - соответствует характерному для данной группы приёмников cosφ.

Расчетную нагрузку для узла системы электроснабжения, содержащего группы приемников электроэнергии с различными режимами работы, определяют с учетом разновременности максимумов нагрузки отдельных групп.


кВА,


где:

 - сумма расчетных активных нагрузок отдельных групп приемников; (табл.2.1).

 - сумма расчетных реактивных нагрузок отдельных групп приемников (табл.2.1);

Км.= 0,9 - коэффициент разновременности максимумов нагрузок отдельных групп приемников /16/;



Находим расчетные нагрузки для насосной станции ДНС:



Аналогичным методом определяем нагрузки других электроприемников и результаты расчета сводим в таблицу 2.1.

Основные группы токоприемников месторождения и их показатели приведены на графическом листе 3.


Таблица 2.1.

Наименование группы токоприемников

Тип эл. двигателя

Номинальное напряж. U ном. (КВ)

Номинальная мощность Рном. (КВт.)

Номинальный COSφ ном.

Частота вращения n ном. (об/мин.)

Кол-во двигателей, (штук)

Суммарная мощ ность эл. двигате- лей (кВт.)

Коэффициент спроса, Кс

Активная мощность расчетная Рр, (кВт.)

Реактивная мощ ность расчетн Qр, (квар.). кзар.

Полная мощностъ S (кВА)

1 ГРУППА

(насосная станция по перекачке нефти)

ВАО-250

6

250

0,9

I500

2

500

0,6

300

145

333

2 ГРУППА

(насосная станция по закачке воды)

СТД-1600

6

1600

0,85

3000

3

4800

0,7

3360

2080

3952

3 ГРУППА

(погружные насосы)

ПЭД35-123АВ5

0,52

32

0.85

3000

11

352

0,5

176

85

196

ВСЕГО







5652


3836

2310

4030


2.3 Обоснование системы электроснабжения и выбор места расположения подстанции


Для обеспечения оборудования месторождения нефти электрической энергией и его бесперебойной работы необходимо создать надежную и экономичную систему электроснабжения.

Широкое распространение получили следующие мероприятия по повышению эффективности использования электрической энергии:- перевод систем электроснабжения на повышенное номинальное напряжение;- приближение источников питания к центрам нагрузок;- выбор рациональной конфигурации электрических сетей;- рациональный выбор и оптимизация режима использования, с учетом фактического графика нагрузки, силовых трансформаторов;- разработка и внедрение мероприятий по оптимальной компенсации реактивной мощности с автоматическим управлением её режимами;- поддержание в узлах нагрузки и у электроприемников рационального уровня напряжения, а также нормируемых показателей качества электроэнергии в соответствии с требованиями ГОСТ13109-87;- выбор типа, мощности и числа электродвигателей основных производственных установок в зависимости от условий их работы и фактической загрузки.

Питание месторождения осуществляется от Уральской энергетической системы Березниковских электрических сетей АО "ПЕРМЭНЕРГО".

Наиболее рациональным местом расположения собственного источника питания месторождения является центр электрических нагрузок (ЦЭН). В случае совпадения ЦЭН с местом расположения технологических объектов или коммуникаций источник питания располагаем с максимально возможным приближением к центру нагрузок.

Для потребителей электроэнергии, относящихся к 1 категории, в соответствии с ПУЭ предусматриваем не менее двух независимых источников питания.

К числу независимых источников питания относят две секции или системы шин одной или двух электростанций и подстанций при одновременном соблюдении следующих двух условий /3/:

1)       каждая секция шин, в свою очередь, имеет питание от независимого источника питания.

2)        Секции (системы) шин не связаны между собой или имеют связь, автоматически отключающуюся при нарушении нормальной работы одной секции (системы) шин.

Исходя из этих требований и условий Шершнёвского месторождения, необходимо создать понизительную подстанцию "Шершнёвская" 35/6кВ, которая позволит обеспечить электроэнергией оборудование и технологические установки месторождения. Подстанцию предполагается строить на равномерном расстоянии от потребителей и, в тоже время, рядом с мощными потребителями электроэнергии, расположенными на территории месторождения.

Согласно инженерно-геологическим изысканиям, грунты на площадке строительства следующие: глина светло-бурая, полутвердая до глубины 2м. Грунтовые воды до глубины 7м не обнаружены. Нормативная глубина промерзания грунта 1,5м. Наиболее холодная температура -50°С.


2.4 Обоснование построения воздушной линии электропередач номинальным напряжением 35 кВ


При проектировании системы электроснабжения должны рассматриваться следующие вопросы:

1)       перспектива развития энергосистемы и системы электроснабжения с учетом рационального сочетания вновь сооружаемых электрических сетей с действующими и вновь сооружаемыми сетями других классов напряжения;

2)       обеспечение комплексного централизованного электроснабжения всех потребителей, расположенных в зоне действия электрических сетей, независимо от их ведомственной принадлежности;

3)       ограничение токов короткого замыкания предельными уровнями, определяемыми на перспективу; снижение потерь электрической энергии.

В связи с выше перечисленным, принимаем номинальный уровень напряжения для питания новой подстанции – 35кВ, с последующей трансформацией напряжения на уровень 6кВ и строим двухцепную линию электропередач – "Нефтяная-Шершневская".


2.5 Выбор мощности колличества и типа силовых трансформаторов


Для более точного выбора числа и мощности силовых трансформаторов необходимо определить суммарную мощность на стороне низкого напряжения силовых трансформаторов. Поэтому произведем подсчет потребляемой мощности в узлах системы внутреннего энергоснабжения (см. рис.2.1.). Расчет производится от скважин по ступеням к секциям шин на стороне низкого напряжения ГПП.

Приведем пример расчета, определения расчетной мощности и тока для группы двигателей скважин, эксплуатируемых погружными электрическими центробежными насосами.

Данные расчета: n=3 - число двигателей;

Рном.=32 (кВт) - номинальная мощность;

Ки=0,45 - коэффициент использования;

Cosf ном.=0.85;

К=1,1 - коэффициент максимума для данной группы.

Расчет /4/:

1) Определяем эффективное число приемников в группе



так как мощности двигателей одинаковы, то nэф.=3

2) Средние активные и реактивные нагрузки составят:



Полная мощность узла составит:




Рис.2.1. Обобщённая схемa электроснабжения месторождения


3) Определяем расчетный ток линии питающей группу двигателей:



Аналогичный расчет произведен и по другим линиям, отходящим от фидеров ГПП, результаты расчета сведены в табл. 2.2. При расчете учитывалось, что собственная потребляемая мощность КТП составит(4)



где Spнн - расчетная мощность на стороне низкого напряжения КТП;

На основании данных табл. 2.2. рассчитываем потребляемую мощность на секциях шин ГПП, при этом считаем, что потребление электроэнергии на собственные нужды незначительно.



где Кр.м=0.9 коэффициент разновременности максимума нагрузки.


Таблица 2.2. Результаты расчета мощностей и токов по основным фидерным линиям

Номер фидера и название приемников, подключенных к нему

Sр (квА)

Iр (А)

6 БКНС № 1

1777

171,3

7 БКНС № 2

1777

171,3

8 БКНС № 3

1777

171,3

3 ДНС № 1

445

43

4 ДНС № 2

445

43

12 Скважины 63,64,69,68.

239

23

11 Скважины 65,66,67.

159

15,3

13 Скважины 55,56,60.

159

15,3

14 Скважины 61,62.

80

7,7



Рассчитываем групповой коэффициент использования:


,


где =4804 (кВт) - суммарная расчетная мощность групп электроприёмников (табл.2.1.);

=7488 (кВт) - суммарная номинальная мощность групп электроприёмников.

Киг.=4804/7488 =0,64

За расчетную нагрузку принимаем:


Sp=Smaxp*Kи.г.=6630*0,64 =4245 (кВА)


Намечаем два варианта мощности силовых трансформаторов, при этом допустимая перегрузка не должна превышать 50% от номинальной, принимаем согласно (5):


Sgn =0.4Sном.


Первый вариант: два трансформатора по 6,3МВА (2Sном=12,6МВА). В нормальном режиме намечается работа одного трансформатора, с коэффициентом загрузки в часы максимума


К3=Smax.p / Sном.=6630/6300=1,05


Трансформатор будет работать с незначительной перегрузкой.

Второй вариант: два трансформатора по 4МВА (2Sном=8МВА).

В нормальном режиме трансформаторы будут работать с коэффициентом загрузки в часы максимума


K3 = 6630/8000 = 0,83


С точки зрения номинальных режимов работы второй вариант более приемлем.

Проверяем возможность перегрузки намеченных трансформаторов при отключении одного из них:

Первый вариант: при отключении одного из трансформаторов на 6,3МВА, оставшийся в работе может пропустить мощность:

1,4Sном.=1,4*6,3=8,8МВА, то есть всю мощность потребляемую электроприёмниками. Коэффициент 1,4 определяет допустимую перегрузку трансформатора.

Второй вариант: при отключении одного из трансформаторов оставшийся в работе сможет пропустить мощность:

1,4Sном.=1,4*4=5,6МВА, то есть всю мощность потребляемую электроприемниками, при этом К3=6630/5600=1,2 -это значение не превышает допустимое. По рассмотренным выше критериям оба варианта трансформаторов приемлемы. По определению экономической целесообразности режима работы двух вариантов трансформаторов, приведенных выше, выбираем первый вариант с использованием двух трансформаторов мощностью по 6,3МВА каждый, с учетом того, что в нормальном режиме работать будет один трансформатор, а другой будет выведен в резерв. Этот вариант еще предпочтителен и тем, что на месторождении планируется дальнейший рост энергопотребления. Принимаем трансформаторы типа ТМ 6300/35/6,3. Основные технические данные приведены в табл. 3.1.

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.