Меню
Поиск



рефераты скачать Системы теплоснабжения станкостроительного завода от котельной

Таблица 7 Результаты гидравлического расчёта паровой сети промпредприятия



4. Тепловой расчёт тепловых сетей промпредприятия

 

4.1 Расчёт потерь тепла с утечками


1)            Объем всей сети:



Определяем объём внутреннего трубопровода:


 , где


- удельный объем внутренних трубопроводов промпредприятия;

и  - расходы тепла на отопление и вентиляцию всех цехов завода (см. табл.5).

Определяем суммарный объём участков и ответвлений:


.


2)            Расход утечек:


.


3)            Потери от утечек:



,


где  - температура воды в подающей магистрали

 - температура воды в обратной магистрали

 - температура холодной воды .

 

4.2 Расчёт толщины изоляции при надземной прокладке трубопроводов


Рассмотрим участок Г – 5:

Длина участка Г-5 , средняя за отопительный период температура воды в подающей линии оС, в обратной линии оС. Глубина заложения труб м, канал уложен в грунт средней влажности, температура которого составляет . По [5, табл.1] определяем теплоизоляционный материал: Плиты из стеклянного штапельного волокна полужёсткие, технические марки ППТ – 75.

Определяется средняя температура теплоизоляционного слоя:

- подающего трубопровода



- обратного трубопровода



1.            Определяем теплопроводность теплоизоляционного материала:

- для подающего трубопровода:




- для обратного трубопровода:


.


По табл. 14 выбирается нормированная плотность теплового потока для подающего трубопровода , для обратного трубопровода - .

2.            Предварительно определяется наружный диаметр теплоизоляционного слоя:

- подающего трубопровода



- обратного трубопровода



3.            Тогда размеры канала составят:

- ширина



- высота



- эквивалентный диаметр



По табл. 12 выбирается коэффициент теплопроводности для маловлажного грунта

4.            Вычисляется термическое сопротивление теплоотдаче от воздуха внутри канала к внутренней стенке канала по формуле (18)



5.            Определяется термическое сопротивление грунта по формуле (19)



6.            Рассчитывается по формуле (22) температура воздуха в канале


.


7.            По формулам (23)-(24) определяются величины В:

- для подающего трубопровода



откуда

- для обратного трубопровода



откуда

8.            По формуле (4) определяется толщина теплоизоляционного слоя:

- для подающего трубопровода



- для обратного трубопровода



Согласно табл. 7 принимается толщина теплоизоляционного слоя для подающего трубопровода  для обратного трубопровода

 

4.3 Расчёт потерь тепла через теплоизоляционную конструкцию


Расчёт участка Г-5.

Длина участка l=350 м. Температура теплоносителя в начале участка в подающей линии , в обратной линии - ; расход теплоносителя G = 10,05 кг/с. Диаметр трубопроводов мм. Теплоизоляционный слой выполнен из Плиты из стеклянного штапельного волокна полужёсткие, технические марки ППТ – 75, толщина теплоизоляционного слоя подающего трубопровода  обратного - . Температура грунта на глубине залегания теплопровода . Коэффициент теплопроводности грунта

1.            Определяется средняя температура теплоизоляционного слоя для:

- подающего трубопровода



- обратного трубопровода



2.            Рассчитывается по формуле (16) коэффициент теплопроводности теплоизоляционного материала:

- для подающего трубопровода



- для обратного трубопровода



3.            Вычисляются диаметры теплоизоляционной конструкции:

- подающего трубопровода



- обратного трубопровода



По табл. 12 для заданного диаметра трубопроводов определяются минимальные расстояния в свету между строительными конструкциями и трубопроводами: а=80 мм; b=140 мм; с=50 мм; d=150 мм.

4.            Рассчитываются размеры поперечного сечения канала:


высота

ширина


По табл. 13 выбирается стандартный железобетонный короб с поперечным сечением  эквивалентный внутренний диаметр

5.            По формуле (11) определяется термическое сопротивление:

- подающего трубопровода


-

обратного трубопровода



6.            По формуле (18) вычисляется сопротивление теплоотдаче от воздуха внутри канала к внутренней стенке канала



7.            Определяется термическое сопротивление грунта по формуле (19)




8.            Рассчитывается температура воздуха в канале по формуле (25)



9.            Вычисляются по формулам (27)-(28) удельные потери тепла:

- подающего трубопровода



- обратного трубопровода



10.        Суммарные потери тепла на расчетном участке тепловой сети



11.        Тепловые потери на участке подающей линии


12.        Температура теплоносителя в конце расчетного участка определяется по формуле (14):




13.        Тепловые потери на участке обратной линии



                   Температура теплоносителя в конце расчетного участка:



Расчет остальных участков производится аналогично. Результаты расчетов представлены в таблице 12.

Таким образом, суммарные потери через изоляцию



Таблица 12 Результаты теплового расчета тепловой сети при прокладке трубопроводов в непроходных каналах.

Участок

Магистраль

Ответвления

О-А

А-Б

Б-В

В-Г

Г-5

А-9

Б-2

В-7

Г-4

Длина участка l,м

450

50

100

100

350

50

100

150

200

Расход на участке G, кг/с

42,93

39,35

25,01

18,30

10,05

3,58

14,34

8,25

6,71

Эквивалентный диаметр dэ, мм

800

800

720

720

600

600

600

600

600

Термическое сопротивление подающего трубопровода R п, мК/Вт

0,835

0,836

1,098

1,098

1,455

1,705

1,454

1,454

1,682

Термическое сопротивление обратного трубопровода R о, мК/Вт

0,715

0,716

1,256

0,955

1,293

1,942

1,292

1,292

1,513

Термическое сопротивление канала R вк, мК/Вт

0,050

0,050

0,050

0,055

0,066

0,066

0,066

0,055

0,066

Термическое сопротивление грунта R гр, мК/Вт

0,267

0,267

0,267

0,281

0,306

0,306

0,306

0,281

0,306

Термическое сопротивление канала и грунта R к-гр, мК/Вт

0,317

0,317

0,317

0,337

0,372

0,372

0,372

0,337

0,372

Темпрература воздуха в канале t k, С

51,0

51,0

42,8

45,6

41,1

36,3

41,1

38,8

37,7

Удельные потери тепла через изоляцию прямого трубопровода q п, Вт/м

118,5

118,4

97,6

95,1

74,8

66,7

74,9

76,4

66,7

Удельные потери тепла через изоляцию обратного трубопровода q о, Вт/м

83,4

83,4

63,5

63,4

47,9

40,8

47,9

47,9

41,4

Суммарные удельные потери qи, Вт/м

201,9

201,8

161,1

158,5

122,7

107,5

122,7

124,3

108,1

Потери тепла через изоляцию трубопровода Q и, кВт

173,0

19,2

31,0

30,4

83,0

10,5

23,7

36,1

42,0

Потери тепла через изоляцию подающего трубопровода Q ип, кВт

64,0

7,1

11,7

11,4

31,4

4,0

9,0

13,8

16,0

Температура в конце участка τ к п

149,6

149,6

149,5

149,3

148,6

149,4

149,5

149,1

148,8

Потери тепла через изоляцию обратного трубопровода Q ио, кВт

109,0

12,1

19,3

19,0

51,5

6,5

14,7

22,4

26,0

Температура в конце участка τ к о

69,4

69,3

69,1

68,9

67,7

69,0

69,1

68,5

68,0

5. Расчёт тепловой схемы котельной с паровыми и водогрейными котлами

 

5.1 Исходные данные


Котельная предназначена для централизованного теплоснабжения промышленного комплекса, а именно систем отопления, вентиляции, горячего водоснабжения и пароснабжения промышленных предприятий.

Технологическим потребителям отпускается пар с параметрами:


p=0,8 МПа, t=175 оС в количестве Dт=14,76 т/ч


Расчетные нагрузки отопления и вентиляции


Qо=5604 кВт, Qв=8787,6кВт.


Нагрузка горячего водоснабжения


Qт=9264 кВт.


Температурный график отопительной тепловой сети – 150/70 оС.

Подогрев сырой воды перед химводоочисткой производится до 20 оС.

Деаэрация питательной и подпиточной воды осуществляется в атмосферных деаэраторах при температуре 104 оС, питательная вода имеет температуру 104 оС, подпиточная – 70 оС.

Величина непрерывной продувки котлов pпр=4% паропроизводительности котельной.

Коэффициент возврата конденсата от технологических потребителей φ=65%, его температура tвк=85 оС.

Котельная работает на мазуте. Возврат конденсата греющего пара с мазутного хозяйства φм.х.=80%, его температура tвкм.х.=60 оС.

Расчет выполнен для максимально-зимнего периода.

 

5.2            Расчёт водогрейной части котельной.


1.                  1.Общая тепловая нагрузка водогрейной части котельной по внешним потребителям.



Утечки в тепловых сетях  принимаются равными 0,75% от объема воды в трубопроводах теплосетей:



где  - объем воды в трубопроводах теплосетей , м3.

,- объемы воды в наружных теплосетях и внутренних трубопроводах, рассчитывается по фактической протяженности подающего и обратного водоводов и их диаметрам.


,


где - длина i-го участка трубопровода, км;

- удельная емкость i-го участка трубопровода в зависимости от внутреннего диаметра, м3 /км.


,

где - расчетная тепловая нагрузка отопления-вентиляции, МВт;

- удельный объём внутренних трубопроводов, м3/МВт.

Для промышленных предприятий  м3/МВт, тогда объем воды в наружных теплосетях:


.


Объем воды во внутренних трубопроводах


.


Объем воды в трубопроводах теплосетей



Утечки в тепловых сетях составят:



Потери тепла с утечкой сетевой воды:


,


где - утечки в тепловых сетях, кг/с;

 - теплоемкость воды, кДж/(кг К);

, - температура сетевой воды в подающей и обратной линиях сети;

- температура исходной воды,  = 5°С.

Тогда потери тепла с утечками:



2.                  Расход сетевой воды на максимально зимнем режиме.



3.                  Расход подпиточной воды.



4.                  Расход воды на рециркуляцию определяется из условия обеспечения на выходе из котла t1к=70оС. На максимально зимнем режиме τ1=150 оС=t11к, следовательно, Gрец=0.

5.                  Расход сетевой воды, поступающей в котел из обратной линии сети.



6.                  Расход воды через котел.



7.                  Проверка расхода сетевой воды на выходе из котельной.



8.                  Тепловая производительность водогрейных котлов.



Данная производительность можно обеспечить четырьмя водогрейными котлами КВ-ГМ4,65 теплопроизводительность 4,65 МВт номинальный расход воды Gном=49,5 т/ч

10.Проверка расхода воды через котел.


-


для данного типа котлов, следовательно для обеспечения номинального расхода воды через котлы следует увеличить расход по линии рециркуляции на величину



11.Температура воды на входе в котел.



5.2 Расчёт паровой части котельной


Предварительная оценка суммарной производительности паровых котлов с учетом расхода пара на собственные нужды (деаэраторы, подогреватели) и мазутное хозяйство, а также потерь внутри котельной.


, здесь b=0,22; c=0,18; φ=0,65


Уточнение расхода пара на мазутное хозяйство котельной (паровые и водогрейные котлы)



- расход пара на разогрев мазута для паровых котлов; здесь  - удельный расход пара на разогрев мазута на 1 тонну вырабатываемого пара.



- расход пара на разогрев мазута для водогрейных котлов; здесь  - удельный расход пара на разогрев мазута на 1 Гкал. отпущенного тепла




Уточненная оценка паропроизводительности котельной с учетом 3% потерь внутри котельной.



Расчет узла непрерывной продувки.

количество воды, удаляемое из котла с продувкой



Количество пара образующегося в сепараторе непрерывной продувки.



здесь h’пр. – энтальпия продувочной воды на входе в расширитель – сепаратор (в барабане котла)

h’’пр. – энтальпия продувочной воды на выходе из расширителя

Количество продувочной воды, выходящей из расширителя.



Расход химочищенной воды, восполняющей потери теплоносителей



Потери конденсата.


 


Расход сырой воды.



Температура сырой воды после охладителя продувки.



Расход пара на пароводяной подогреватель сырой воды



Температура химочищенной воды, поступающей в деаэратор подпиточной воды (после охладителя подпитки)



Принимаем как 10% от Gподп



Расход пара на деаэратор подпиточной воды



С учетом количества пара, идущего на подогрев воды, фактический расход химочищенной воды, поступающей в подпиточный деаэратор.



уточняем



Расход пара на пароводяной подогреватель химочищенной воды.


 здесь


- расход химочищенной воды, поступающей в деаэратор.

Суммарное количество воды и пара, поступающих в деаэратор питательной воды, за исключением греющего пара:




Средняя температура поступивших потоков:



Расход пара на деаэратор питательной воды:



Суммарный расход пара на собственные нужды котельной:



Паропроизводительность котельной с учетом внутренних потерь:



Проверка расчета:



Проведенный расчет показывает, что данная котельная может быть укомплектована тремя паровыми котлами ДЕ-6,5-14 и четырьмя водогрейными КВ-ГМ 4,65.

 

5.3 Расчёт водоводяного подогревателя


К расчету принимаем водоводяной охладитель подпиточной воды в котельной и производим его поверочной расчет. Исходными данными к расчету являются: - температуры нагреваемой химически очищенной воды на входе и выходе:


ее расход


- температуры охлаждения подпиточной воды на входе и выходе:


 ее расход .


1.Тепловая мощность теплообменника:


.

2.Средний по поверхности температурный напор:



-средняя температура подпиточной воды, которая движется в межтрубном пространстве;


- средняя температура химически очищенной воды, которая движется в трубах.

3.Необходимая поверхность теплообмена при ориентировочно принимаемом значении коэффициента теплопередачи =1500 Вт/(м2∙К):



4. Площадь сечения трубок при принятой скорости в трубках wтр=1,5м/с:


,


Где -плотность воды при температуре .

5. Площадь сечения межтрубного пространства при принятой скорости wм.тр =0,5м/с:


, где


-плотность воды при температуре .

Теперь делаем выбор теплообменника. Ближайшим подходящим будет водяной подогреватель типоразмера ОСТ 34-588-68-04, имеющий следующие параметры:

- поверхность теплообмена – F=1,31 м2;

- диаметр корпуса – Dн/Dвн=76/69 мм/мм;

- диаметр трубок - dн/dвн=16/14 мм/мм;

- число трубок в одной секции – n =7 шт;

- площадь сечения трубок – Fтр =0,00108 м2;

- площадь сечения межтрубного пространства – Fм.тр=0,00233 м2;

- эквивалентный диаметр межтрубного пространства – dэкв=16,4 мм.

Поверочный расчет теплообменника:

1.Скорость водя в трубках и между трубками:


;

.


2. Коэффициент теплоотдачи:


где


 - приведены в таблице 4.1 [5, c.76];

- при - трубках;

- при  - в межтрубном пространстве;


;


3. Расчетный коэффициент теплопередачи:


,где



- средний коэффициент теплопроводности латуни.

4.Температурный напор в противоточной схеме:


.


5.Необходимая расчетная поверхность теплообмена:



6.Выбранный теплообменник имеет запас поверхности:


,


что является приемлемым результатом, поскольку не превышает допустимых 15-20% запаса поверхности.


Заключение


Годовой расход тепла станкостроительным заводом составил 304625,1 ГДж/год. Для покрытия тепловых нагрузок отопления, вентиляции, горячего водоснабжения и технологических нагрузок спроектирована котельная. Котельная укомплектована тремя паровыми котлами ДЕ-6,5-14 и четырьмя водогрейными КВ-ГМ 4,65.

Выбран водоводяной подогреватель. Поверочный расчёт теплообменника показал, что он подходит для данных условий эксплуатации.

Рассмотрен вопрос регулирования тепловых нагрузок, что обеспечивает комфортные условия работы персонала предприятия, сокращает перерасход тепловой энергии и топлива. Производится качественное централизованное регулирование. Для цеха №8 (цех с большими тепловыделениями) осуществляется местное количественное подрегулирование.

Проведенный гидравлический расчет позволил выбрать необходимые для рассчитанных расходов теплоносителей диаметры труб магистральных трубопроводов и ответвлений. Тепловой расчет сетей позволил определить потери тепла через теплоизоляционные конструкции.


Список используемой литературы


1.                 Расчет тепловых нагрузок промышленного предприятия: Методические указания к курсовому и дипломному проектированию для студентов дневной формы обучения специальности 100700- "Промышленная теплоэнергетика"

2.                 Регулирование централизованного теплоснабжения промпредприятия: Методические указания к курсовому и дипломному проектированию для студентов дневной формы обучения специальности 100700- "Промышленная теплоэнергетика"

3.                 Гидравлический расчет тепловых сетей: Методические указания к курсовому и дипломному проектированию для студентов дневной формы обучения специальности 100700- "Промышленная теплоэнергетика"

4.                 Тепловой расчет тепловых сетей промпредприятия: Методические указания к курсовому и дипломному проектированию для студентов дневной формы обучения специальности 100700- "Промышленная теплоэнергетика"

5.                 Тепловые схемы центральной котельной, их расчет и выбор оборудования: Методические указания к курсовому и дипломному проектированию для студентов дневной формы обучения специальности 100700- "Промышленная теплоэнергетика".

6.                 Соколов Е. Я. Теплофикация и тепловые сети: Учебник для вузов. – 7-е изд., стереот. – М.: Издательство МЭИ, 2001. – 472 с.: ил



Приложение




Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.