Силовой масляный трансформатор ТМН-8000/60
Тольяттинский
государственный университет
Кафедра
«Электромеханика»
Силовой масляный трансформатор ТМН-8000/60
Пояснительная
записка к курсовому проекту по курсу:
«Электрические
машины»
Руководитель
________________ Леунова
Е.М.
Исполнитель
студент группы ЭМз-601
________________ Иконникова
Е.О.
Тольятти 2010
Аннотация
В
данном курсовом проекте спроектирован силовой масляный трансформатор ТМН-8000/60.В
процессе проектирования трансформатора был осуществлён расчёт оптимального
варианта, отвечающего условиям минимума приведённых затрат. Это позволило
выявить основные размеры и параметры данного трансформатора, а именно диаметр
стержня, высоту окна магнитопровода, потери холостого хода и короткого
замыкания, минимальную цену трансформатора. При проектировании выполнены
построения и расчёт активного сечения стержня магнитопровода, произведён выбор
типа и расчёт параметров обмоток трансформатора, определены потери и
напряжение короткого замыкания, потери и ток холостого хода. Кроме того, в ходе
расчёта произведена компоновка активной части трансформатора в баке, выбор
размеров бака. Помимо этого пояснительная записка включает в себя расчёт
динамической стойкости трансформатора при коротком замыкании, выбор
расширителя, термосифонных фильтров. Курсовой проект состоит из пояснительной
записки объёмом 45 листов и графической части, выполненной на одном листе
формата А3
Содержание
Введение
1.
Исходные данные для расчета
2.
Технико-экономический расчет оптимального варианта
3.
Построение и расчет активного сечение стержня магнитопровода
4.
Расчет напряжения одного витка, количества витков, напряжений и токов на всех
ответвлениях обмотки РО
5.
Выбор типа и расчет параметров обмоток трансформатора
6.
Расчет потерь короткого замыкания и напряжения короткого замыкания
7.
Расчет напряжения короткого замыкания
8.
Расчет потерь и тока холостого хода
9.
Тепловой расчет трансформатора
10.
Компоновка активной части в баке
11.
Выбор вспомогательного оборудования трансформатора
12.
Описание конструкции трансформатора
Заключение
Список
используемой литературы
Введение
магнитопровод напряжение обмотка трансформатор
Трансформатором
называется статическое электромагнитное устройство, имеющее две или более
индуктивно связанных обмоток и предназначенное для преобразования посредством
электромагнитной индукции одной или нескольких систем переменного тока в одну
или несколько других систем переменного тока.
В
народном хозяйстве используются трансформаторы различного назначения в
диапазоне мощностей от долей вольт-ампера до 1 млн. кВ-А и более. Принято
различать трансформаторы малой мощности с выходной мощностью 4 кВ-А и ниже для
однофазных и 5 кВ-А и ниже для трехфазных сетей и трансформаторы силовые
мощностью от 6,3 кВ-А и более для трехфазных и от 5 кВ-А и более для однофазных
сетей.
Трансформаторы
малой мощности различного назначения используются в устройствах радиотехники,
автоматики, сигнализации, связи и т. п., а также для питания бытовых
электроприборов. Назначение силовых трансформаторов — преобразование
электрической энергии в электрических сетях и установках, предназначенных для
приема и использования электрической энергии. Силовые
трансформаторы
подразделяются на два вида. Трансформаторы общего назначения предназначены для
включения в сеть, не отличающуюся особыми условиями работы, или для питания
приемников электрической энергии, не отличающихся особыми условиями работы,
характером нагрузки или режимом работы. Трансформаторы специального назначения
предназначены для непосредственного питания потребительской сети или приемников
электрической энергии, если эта сеть или приемники отличаются особыми условиями
работы, характером нагрузки или режимом работы. К числу таких сетей или
приемников электрической энергии относятся подземные рудничные сети и
установки, выпрямительные установки, электрические печи и т. п.
Силовой
трансформатор является одним из важнейших элементов каждой электрической сети.
Передача электрической энергии на большие расстояния от места ее производства
до места потребления требует в современных сетях не менее чем
пяти-шестикратной трансформации в повышающих и понижающих трансформаторах. Так,
при напряжении на шинах электростанции 15, 75 кВ в современной сети при
удалении потребителей от электростанции, питающей сеть, около 1000 км часто
применяется такая последовательность шести трансформаций напряжения с учетом
падения напряжения на линиях передачи: 15,75 на 525 кВ; 500 на 242 кВ; 230 на
121 кВ; 115 на 38,5 кВ; 35 на 11 кВ; 10 кВ на 0,4 или 0,69 кВ.
Новые
конструкции магнитных систем характеризуются применением косых стыков пластин в
углах системы, стяжкой стержней и ярм кольцевыми бандажами вместо сквозных
шпилек в старых конструкциях и многоступенчатой формой сечения ярма в плоских
магнитных системах. Находят применение стыковые пространственные магнитные
системы со стержнями, собранными из плоских пластин, и с ярмами, навитыми из
ленты холоднокатаной стали, а также магнитные системы, собранные только из
навитых элементов. Эти конструкции позволяют уменьшить расход активной стали и
потери холостого хода.
Уменьшение
расхода электротехнической стали при стабильности допустимой индукции
достигается в настоящее время за счет изменения конструкции магнитной системы,
например путем перехода от плоских к пространственным магнитным системам.
Силовой
трансформатор является одним из важнейших элементов современной электрической
сети, и дальнейшее развитие трансформаторостроения определяется в первую
очередь развитием электрических сетей, а следовательно, энергетики страны.
1.
Исходные данные для расчета
ТМН
8000/60 - трехфазный двухобмоточный трансформатор, с естественной циркуляцией
масла, с регулированием напряжения под нагрузкой ±16% от номинального: 9
ступеней по 1,78% в каждой ступени, номинальной мощностью 8 МВА
1.1
Номинальная мощность Sном=8·106
В·А
1.2
Число фаз mф=3
1.3
Частота f=50 Гц
1.4
Номинальные линейные напряжения обмоток Uвн=66·103
В, Uнн=6,3·103
В
1.5
Схема и группа соединения обмоток Y/Д11
1.6
Диапазон регулирования αрег=16 %
Количество
ступеней nступ=9
Тип
регулирования РПН-регулирование под нагрузкой
1.7
Тип охлаждения: М - с естественной циркуляцией масла
1.8
Характер нагрузки: длительная непрерывная
1.9
Потери короткого замыкания Ркз=48·103 Вт
1.10
Напряжение короткого замыкания Uкз=10,5
%
1.11
Марка стали ЭЗ407
1.12
Материал обмоток: алюминий
Потери
и ток холостого хода не задаются, а определяются при расчете оптимального
варианта.
2.
Технико-экономический расчет оптимального варианта
При
постоянных потерях короткого замыкания Рк.з. и постоянном напряжении
короткого замыкания Uк.з.
приведенные затраты при выборе оптимального варианта определяются выражением
Зприв
=
(eн+атр)×Цтр
+ уэ×Твкл×Рхх
+ руб./год (2) ,
атр
– норма амортизационных отчислений от стоимости трансформатора, атр=
0,063 1/год;
Цтр
– оптовая цена трансформатора, руб.;
уэ
– стоимость электроэнергии, рассчитанная для двухставочного тарифа при средней
продолжительности максимальной нагрузки для понижающих трансформаторов 5300
час/год, уэ = 0,338×10-3 руб/Вт×час;
Твкл
– продолжительность включения трансформатора, Твкл =
8600 час/год.
Критерием
при выборе оптимального варианта является минимум проведенных затрат,
рассчитанных по вышеприведенной формуле, для различных значений b
- коэффициента, определяющего соотношение основных размеров в трансформаторе.
,
где
ДН-В – средний диаметр канала между обмотками НН и ВН;
Нобм
– высота обмоток.
Коэффициент
b
в трансформаторах изменяется в пределах 0,5…4. Определение минимума приведенных
затрат проводится в результате расчета нескольких вариантов с различными
значениями b (0.63, 1, 1.6, 3.5, 4). Результаты расчета сводятся
в таблицу 2.2., форма которой приведена ниже. Выбор оптимального варианта,
соответствующего Зприв min
,
проводится по графику Зприв = f(b)
(см. рис. 2.1). Для выбранного по графику bопт
необходимо провести повторный расчет, округляя Дст до ближайшего
стандартного значения, и уточнить bопт
bопт
ут = bопт
Таблица
2.2
Наименование параметра
|
РЕЗУЛЬТАТЫ РАСЧЕТА
|
b
|
0,63
|
1
|
1,6
|
2,5
|
4
|
bопт =1,11
|
Дст , м
|
0,314
|
0,351
|
0,395
|
0,44
|
0,497
|
0,360
|
Дн-в ,
м
|
0,531
|
0,569
|
0,614
|
0,66
|
0,719
|
0,579
|
Lм-о , м
|
0,959
|
0,997
|
1,042
|
1,089
|
1,147
|
1,006
|
Hобм , м
|
2,607
|
1,788
|
1,206
|
0,838
|
0,565
|
1,638
|
Hокн , м
|
2,857
|
2,038
|
1,456
|
1,088
|
0,815
|
1,888
|
Gст , кг
|
6,886·10³
|
7,146·103
|
7,815·103
|
8,881·103
|
1,066·104
|
7,258·103
|
Рхх , Вт
|
9,868·10³
|
1,024·104
|
1,12·104
|
1,273·104
|
1,528·104
|
1,04·104
|
Qхх , ВАР
|
2,73·104
|
3,154·104
|
3,772·104
|
4,545·104
|
5,663·104
|
3,274·104
|
iхх , %
|
0,341
|
0,394
|
0,471
|
0,568
|
0,708
|
0,409
|
j , А/м
|
9,642·105
|
1,124·106
|
1,318·106
|
1,524·106
|
1,78·106
|
1,165·106
|
|
|
|
|
|
|
|
Зпр руб/год
|
1,943·104
|
1,804·104
|
1,791·104
|
1,895·104
|
2,145·104
|
1,79·104
|
2.1.
Предварительная ширина обмотки НН
kв1 , kв2 и αв -
коэффициенты, определяемые на основе анализа геометрических соотношений в
изготавливаемых трансформаторах и могут быть приняты равными следующим
значениям:
kв1=0,14,
kв2=0,4,
αв=0,0577
- коэффициенты, определяемые на основе анализа геометрических соотношений в
изготавливаемых трансформаторах (для трансформаторов с обмотками из
алюминиевого провода)
2.2.
Предварительная ширина обмотки ВН
2.3.
Приведенная ширина главного канала рассеяния (между обмотками ВН и НН)
bн_в=0,045
м - ширина между обмотками ВН и НН
2.4.
Диаметр стержня магнитопровода
β=1,11
-коэффициент, связывающий радиальный размер и высоту трансформатора
Кзап.КР=0,885
-коэффициент заполнения площади круга стержня магнитопровода активной сталью;
Кос=0,95
-коэффициент осевого поля рассеяния
Вст=1,6
Тл - индукция в стержне
Принимаем
стандартное значение Dст=0,360
м
2.5.
Средний диаметр канала между обмотками
Кст_о=0,015
-коэффициент, учитывающий толщину бандажей, прессующих стержень магнитопровода
bо_н=0.018
м -изоляционное расстояние от стержня до обмотки НН
2.6.
Межосевое расстояние между центрами разных фаз
bр=0,5·bн=0,5·0,063=0,0315
м -ширина регулировочной обмотки
bм_ф=0,04
м -межфазное расстояние
bв_р=0,045
м -ширина канала между ВН и РО
2.7.
Высота обмотки
2.8.
Высота окна магнитопровода
hЕК=0,03
м -высота емкостного кольца обмотки ВН совместно с прилегающим к обмотке
каналом
hобм_в.я=0,08
м -изоляционный промежуток от обмотки до верхнего ярма магнитопровода
hобм_н.я=0,07
м -изоляционный промежуток от обмотки до нижнего ярма магнитопровода
hпрес=0,07
м -высота, необходимая для размещения устройств, прессующих обмотки
2.9.
Масса электротехнической стали магнитопровода
γст=7,65·103
кг/м3 -плотность электротехнической стали
Кус.яр=1,02
м -коэффициент увеличения площади сечения ярма по сравнению с площадью сечения
стержня
2.10.
Удельные потери в стали магнитопровода
Кр=0,296,
Квр=2,64 -коэффициенты, определенные для стали марки 3407 толщиной
0,3 мм для диапазона индукции в стали Вст=1,5...1,7 Тл
2.11.
Активные потери холостого хода трансформатора (полные потери в стали
магнитопровода)
Кув.р=1,4
-коэффициент, учитывающий увеличение активных потерь в стали в зависимости от
конструкции и технологии изготовления магнитопровода
2.12.
Удельная намагничивающая мощность стали
Кq=0,137,
Кbq=5,06
2.13.
Удельная намагничивающая мощность в стыках
Кстык=2620,
Кв.стык=5
2.14.
Реактивные потери холостого хода трансформатора (полная намагничивающая
мощность)
Кув.Q=1,2
-коэффициент, учитывающий увеличение реактивных потерь в стали в зависимости от
конструкции и технологии изготовления магнитопровода
Страницы: 1, 2, 3
|