Меню
Поиск



рефераты скачать Реконструкция электроснабжения колхоза "Прогресс"


2.5 Выбор и расчёт сечений линий электропередачи 0,4 кВ


Определение числа линий электропередачи 0,4 кВ

В настоящее время приняты следующие основные принципы построения схем внутреннего электроснабжения:

1.                Число отходящих от трансформаторной подстанции линий не должно превышать 4-х.

2.                Работа линий и трансформаторов должна быть раздельной, так как параллельная работа приводит к увеличению токов КЗ, удорожанию релейной защиты, особенно на коротких линиях внутри объекта.

3.                Воздушные линии напряжением 0,38 кВ располагают преимущественно вдоль одной стороны дорог.

Распределение электроэнергии по рекомендациям СН-174-75 может быть выполнено радиальной, магистральной или смешанной схемой. Выбор зависимости от территориального размещения нагрузок, их величины, от требуемой степени надёжности питания и других характерных особенностей проектируемого объекта.

В практике проектирования электроснабжения предприятий крупные и ответственные потребители обычно подсоединяются к источнику электроэнергии по радиальным схемам. Средние и мелкие потребители группируются, а их электроснабжение проектируется по магистральному принципу. Такое решение позволяет создать схему внутреннего электроснабжения с наилучшими технико-экономическими показателями.

Основываясь на принципах построения внутренних сетей предприятия и учитывая особенности проектирования электроснабжения фермы, принимаем смешанную схему сети 0,38 кВ из 4-х линий. Две линии (схема на рис. 2.3) 1 и 4 от трансформатора Т1 питают 4 коровника (потребители II категории №№ 2, 4 и 15), родильное отделение (№3), телятник (№8) и водонасосную станцию (№14). Другие две линии 2 и 3 снабжают электроэнергией сенохранилище и хранилище сочных кормов (потребители №13 и 11), весовую, 3 телятника, откормочное и конюшню (№ № 5-7, 9, 10) от Т2.

Выбор расчётной схемы сети 0,38 кВ и расчёт нагрузок линий

Расчётную схему линий 0,38 кВ составим для дневных нагрузок, используя генплан фермы на рис. 2.2, и покажем на рисунке 2.3.

С учётом коэффициента ко одновременности активную расчётную нагрузку i-й линии определим по выражению:


РЛ.i = ко·,(2.11)


где РД.iдневная нагрузка i-го потребителя в данной линии. Если нагрузки потребителей различаются более чем в 4 раза, наименьшие нагрузки РД.j складываем без учёта коэффициента одновременности в соответствии с формулой:


РЛ.i = ко·+.(2.12)


Полная расчётная мощность определяется с учётом коэффициента мощности нагрузок


Sр = РЛ.i/cosφ.(2.13)


В соответствии с расчётной схемой определим расчётные нагрузки линий.


Линия 1:ко = 0,85;cosφ14,15 = 0,78;

РЛ.1 = 0,85(10 +20) = 25,5 кВт;

SрЛ1 = 25,5/0,78 ≈ 33 кВА.

Линия 2: ко = 0,85;cosφ13 = 0,78; cosφ11 = 0,86;

РЛ.2 = 0,85(10 + 5)= 12,8 кВт;

SрЛ2 = 8,5/0,78 +4,25/0,86 ≈ 16 кВА.

Линия 3:ко = 0,8;cosφ6,7,12 =1; cosφ5,9 = 0,86;

РЛ.3 = 0,8(10+5+5)+(3 +1) = 20 кВт;

SрЛ3 =10+10/0,86+3+1 ≈ 28 кВА.

Линия 4:ко=0,85; cosφ1,3=1; cosφ2=0,82; cosφ4=0,78; cosφ8=0,86;

РЛ.4 = 0,85(45+20)+(6 +6 +5) = 72,25 кВт;

SрЛ4 =6+6+45/0,82+20/0,78+5/0,86 ≈ 88 кВА.


Линию 1, проходящую вблизи воздушных линий 10кВ, выполним кабелем, чтобы избежать пересечения воздушных линий. Остальные линии принимаем воздушными линиями электропередачи.

Выбор сечения проводов и расчёт потерь напряжения

Прокладку кабеля по территории фермы осуществляем в воздухе. Предусматриваем применение кабеля марки ААШв с алюминиевыми жилами в алюминиевой защитной оболочке с наружным покровом из поливинилхлоридного шланга.

Выбор сечения кабельной линии осуществляем по экономической плотности тока iэк с дальнейшей проверкой по техническим условиям. К техническим условиям относят проверку сечений по нагреву расчётным током в режиме наибольших нагрузок и послеаварийном режиме.

Нестандартное экономически целесообразное сечение кабеля Fэ выбираем по экономической плотности тока по формуле:


FЭ = Ip/iЭк,(2.14)


гдеIр – расчётный ток кабельной линии, А.

Согласно ПУЭ [3] при годовом максимуме нагрузки Тмакс< 5000 ч и использовании в качестве проводника – алюминия iЭк =1,4 А/мм2.

Расчётный ток кабельной линии определяем по формуле:


, А(2.15)

гдеSp – полная расчётная мощность электроприёмников в линии, кВА.

Расчётный ток линии 1

= 50,1 А.


Сечение жилы кабеля линии 1

FЭ.Л1 = 50,1/1,4 = 35,8 мм2.


Полученное значение сечения жилы округляем до меньшего стандартного значения. Принимаем [2] FЭ.ст= 35 мм2 (r0=0,89 Ом/км; х0=0,064 Ом/км).

Так как кабель проложен в воздухе, то для данного сечения кабеля

Iдоп = 65 А.

Найденное по справочнику сечение проверяем по нагреву.

В нормальном рабочем режиме:


Кt· КаIдоп Iр,(2.16)


гдеКt – коэффициент учёта температуры среды, отличной от расчётной;

Ка – коэффициент учёта расстояния в свету между кабелями, проложенными рядом и их количеством;

Iдоп – длительный допустимый ток для кабеля, А.

Принимаем Кt=1, т.к. длительно допустимая температура жилы кабеля с бумажной изоляцией на напряжение 0,66 кВ составляет +650С, а температура среды составляет +15о С. Тогда в соответствии с формулой (2.16) имеем

65А > 50А,

следовательно, сечение жил кабеля проходит в нормальном рабочем режиме. В послеаварийном режиме, учитывая возможность 30 % перегрузки линии:


1,3 Кt· КаIдоп Iп/ав,(2.17)


гдеIп/ав – максимальное значение тока кабеля в послеаварийном режиме, которое определяется для однотрансформаторной подстанции с резервированием формулой:


.(2.18)


Максимальное значение тока кабеля в послеаварийном режиме

 ≈ 60 А.


Условие (2.17) для послеаварийного режима

1,3·65 = 84,5 А > 60 А.


Данное условие также выполняется.

К техническим условиям относят также проверку по потере напряжения:

-                     в рабочем режиме:


 ≤ 5%(2.19)


-                     в послеаварийном режиме:

 ≤ 10%(2.20)


гдеl – длина кабельной линии, км;

х0, r0 – удельные активное и индуктивное сопротивления жилы кабельной линии, Ом/км.

Находим потерю напряжения в кабеле в рабочем и послеаварийном режимах:


 = 2,1% < 5%.


Проверка сечений по термической стойкости проводится после расчётов токов короткого замыкания.

Далее определяем потери в кабельной линии:

-активной мощности


, кВт(2.21)


-реактивной мощности


, квар(2.22)


-активной электроэнергии


, МВтч/год,(2.23)


где  - потери в изоляции кабеля, определяемые как


.(2.24)

Так как,  - величина сравнительно небольшая и в расчётах учитывается только при высоких напряжениях;

t - время максимальных потерь, определяемое по формуле:


, ч(2.25)


где Тм=4500 ч – для двухсменной работы при продолжительности смены равной 8 часов. Тогда  ч.

Определяем потери активной мощности в кабельной линии 1:

Ркл1 = 3·50,1·0,12·0,89 = 0,016 кВт.


Потери реактивной мощности в этой же линии 1:

Qкл1 = 3·50,1·0,12·0,064 = 0,001 вар.


Потери активной электроэнергии в кабельной линии 1:

ΔWКл1 = 0,016·2846 = 45,5 кВт·ч/год.


Рассчитаем сечения проводов воздушных линий электропередачи и потери напряжения в них, используя для участка линии формулу:


ΔUучастка = ΔUуд·Sрасч.участка·lучастка.


Принимая провод 3А35+А35 (r0 = 0,83 Ом/км) для участка ΔU2-1-11 и провод 3А50+А50 (r0 = 0,588 Ом/км) для остальных участков, рассчитаем потери напряжения на участках линии 2:

ΔU2-1-11= 0,83·5·0,104 = 0,43%;

ΔU2-2-1 = 0,588·16·0,132 = 1,24%;

ΔU2-2-1-13 = 0,588·10,9·0,031 = 0,2%.


Наибольшая потеря напряжения в линии 2 составит сумму потерь на участках:


ΔU2макс = ΔU2-2-1+ ΔU2-1-11;

ΔU2макс = 1,24+ 0,43 = 1,67% < ΔUдоп= 5%.


Следовательно, выбранные сечения проводов удовлетворяет условию по допустимой потере напряжения в линии 2. Принимаем провод 3А35+А35 на участках ΔU3-3-9, ΔU3-3-7, ΔU3-3-6, ΔU3-2-5, ΔU3-1-12, остальные участки выполним проводом 3А50+А50 (r0 = 0,588 Ом/км). Потери напряжения на участках линии 3:

ΔU3-3-9= 0,83·4,6·0,036 = 0,14%;

ΔU3-3-7 = 0,83·10·0,025 = 0,21%;

ΔU3-3-6 = 0,83·3·0,015 = 0,04%;

ΔU3-2-3-3= 0,588·17,6·0,062 = 0,64%;

ΔU3-2-5 = 0,83·4,7·0,085 = 0,33%;

ΔU3-1-3-2 = 0,588·27,2·0,105 = 1,68%;

ΔU3-1-12 = 0,83·0,8·0,016 = 0,01%;

ΔU3-3-1 = 0,588·28·0,121 = 1,99%.


Наибольшая потеря напряжения в линии 3 состоит из потерь на участках:


ΔU3макс = ΔU3-3-1+ ΔU3-1-3-2+ ΔU3-2-3-3+ ΔU3-3-7;

ΔU3 = 1,99 + 1,68 + 0,64 + 0,21 = 4,52% < ΔUдоп= 5%.

Принимаем провод 3А70+А70 (r0 = 0,42 Ом/км) для участков ΔU4-4-1, ΔU4-1-4-2, ΔU4-2-4-2-1, ΔU4-2-1-2-2, для ΔU4-1-2, ΔU4-1-2 и ΔU4-2-2-4 - провод 3А50+А50 и провод 3А35+А35 - для ΔU4-2-2-8, ΔU4-2-1-3. Тогда потери напряжения на участках линии:

ΔU4-2-2-8= 0,83·5·0,049 = 0,20%;

ΔU4-2-2-4 = 0,42·21,8·0,042 = 0,38%;

ΔU4-2-1-2-2 = 0,42·26,8·0,038 = 0,43%;

ΔU4-2-1-3= 0,83·6·0,042 = 0,21%;

ΔU4-2-4-2-1 = 0,42·32,8·0,121 = 1,67%;

ΔU4-2-1 = 0,588·6·0,015 = 0,05%;

ΔU4-1-4-2 = 0,42·38,8·0,095 = 1,55%;

ΔU4-1-2 = 0,588·46,7·0,035 = 0,96%;

ΔU4-4-1 = 0,42·85,5·0,046 = 1,65%.


Наибольшая потеря напряжения в линии 4 складывается из потерь на участках:


ΔU4макс = ΔU4-4-1+ ΔU4-1-4-2+ ΔU4-2-4-2-1+ ΔU4-2-1—2-2;

ΔU4 = 1,65 + 1,55 + 1,67 + 0,43 = 4,47% < ΔUдоп= 5%.


2.6 Конструкция линий электропередачи напряжением 0,38 кВ


Для воздушных линий принимаем железобетонные опоры на основе стойки СВ-10,5-5 (длина стойки 10,5м и допустимый изгибающий момент не более 5т·м). Глубину заложения опор в грунт принимаем равную 2,5 м.

Пролёты между опорами возушных линий принимаем:

·                   для проводов А70 - 37 м;

·                   для проводов А50 – 40 м;

·                   для проводов А34 – 45 м,

 длины ответвлений к вводам в здания – не более 10м.

Крепление проводов выполним на изоляторах ТФ-20. Крепление проводов на промежуточных опорах выполним проволочными скрутками, а на концевых опорах – зажимами плашечными типа ПА.

Траверсы присоединяем проводниками диаметром 6 мм к нулевому проводу посредством зажимов ПА.

Для заземления опор используем один из стежрней стойки, к которому с двух сторон привариварены заземляющие элементы.

В качестве шинопроводов 0,4 кВ принимаем шинопровод ШРА73-400 с параметрами:

Iн ≤ 400А, Uн = 380 В,

rф= 0,15мОм/м,

 хф=0,17мОм/м,

rN=0,162мОм/м,

хN=0,164мОм/м,

lш=0,7м.


Повторные заземления нулевого провода принимаем Rп.з.≤ 30 Ом.



3. Выбор оборудования и защиты линий сети электроснабжения

3.1 Выбор предохранителей в сети 0,38 кВ и проверка защиты

Предохранители для линий 0,38 кВ выбираем по напряжению сети и рабочему току в начале линии из условий:


Uпр ³ Uсети и Iпр ³ Iл.(3.1)


Параметры линий и выбранных [4] предохранителей сводим в таблицу 3.1.


Таблица 3.1 - Параметры предохранителей в сети 0,38 кВ

Линия

Рабочий ток

линии Iл, А

Параметры предохранителя

Тип

Номинальный ток предохранителя,

А

Номинальный ток плавкой

вставки,

А

Предельный ток отключения при

U =380 В, кА

1

50,1


ПП 40

(ТУ16-90 ИГПН 646727.001ТУ)



25-630

63



200

2

24,3

40

3

42,6

63

4

130

160

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.