Меню
Поиск



рефераты скачать Реконструкция и модернизация подстанции "Ильинск"

3) Определим первичный ток небаланса с учетом составляющей Iнб’’’ по формулам:


Iнб=Iнб+Iнб’’+Iнб’’’ , (8.3)

Iнб=kапер×kоднצi×Iк.макс ; (8.3.1)


где    Iк.макс- периодическая слагающая тока (при t=0) при расчетном внешнем трехфазном металлическом КЗ (Iк.макс=4700 А);

¦i - относительное значение тока намагничивания, при выборе трансформаторов тока по кривым 10%ных кратностей принимается равным 0,1;

kодн- коэффициент однотипности, принимается равным 1, если на всех сторонах трансформатора имеется не более одного выключателя;

kапер - коэффициент, учитывающий переходный режим, для реле с НТТ принимаем равным 1.


 , (8.3.2)


где  ,  - периодические составляющие токов (при t=0), проходящих при расчетном внешнем КЗ на сторонах, где производится регулирование напряжения;

,  - относительные погрешности, обусловленные регулированием напряжения на сторонах защищаемого трансформатора и принимаемые половине суммарного (полного) диапазона регулирования напряжения на соответствующей стороне.

 

Iнб=1×1×0.1×4700+0.16×1990+0.05×1930=1154.9 [А],


4) Выбираем ток срабатывания защиты по условию отстройки от бросков тока намагничивания по выражению:


I с.з.=kн×Iном тр=1.5×Iном тр (8.4)


где    kн=1.5 для реле серии ДЗТ.


Iс.з.=1.5×10000/Ö3×10=866 А,

5) Определим число витков обмоток ДЗТ для основной и неосновных сторон:

Расчет будем производить по следующим формулам:


Iс.р.осн=Iс.з.осн. ×kсх осн(3)/ki , (8.5)


где    Iс.з.осн. - ток срабатывания защиты, выбранный по условию (8.4) и приведенный к напряжению основной стороны;

ki - коэффициент трансформации трансформатора тока на основной стороне;

kсх осн(3) - коэффициент схемы для ТТ на основной стороне.


 (8.6)


где  - намагничивающая сила срабатывания реле,


 (8.7)

 (8.8)

 (8.9)


где  и  - расчетные числа витков уравнительных обмоток ДЗТ для неосновных сторон;

 и  - периодические составляющие токов КЗ (при t=0), проходящих при расчетном внешнем КЗ на сторонах, где используются соответственно числа витков  и .

Результаты расчета числа обмоток ДЗТ сводим в таблицу 8.2.

Таблица 8.2

Определение чисел витков обмоток НТТ

Обозначение величины и расчетное

Выражение

 Численное значение

 по (8.5)

Iс.р.осн=866×1×5/600=7.22 А

 по (8.6)

wосн.р.=100/7.22=13.85 вит

 (ближайшее меньшее число)

13 вит

100/13=7.7А

1 по (8.7)

wн.р.1=13×4.81/3.03=20.6 вит

2 по (8.7)

wн.р.2=13×4.81/4.76=13.1 вит

1

20 вит

2

13 вит

 по (8.9)

Iнб’’’=(20.6-20)×1990/20.6+(13.1-13) × ×1930/13.1=72.7


6) Определим необходимое число витков тормозной обмотки по выражению:


 (8.10)


где  - тангенс угла наклона к оси абсцисс касательной, поведенной из начала координат к характеристике срабатывания реле (тормозной), соответствующей минимальному торможению (кривая 2 на рис. 2-16 [8]); для реле ДЗТ-11 принимается равным 0,87 [9].


wm1=1.5×306.9×33/1990×0.87=8.7 вит.


Принимается ближайшее большее число витков тормозной обмотки: 9 вит. (числа витков на тормозной обмотке реле ДЗТ-11 могут быть установлены: 1, 3, 5, 7, 9, 11, 13, 18 и 24).

wm2=1.5×306.9×26/1930×0.87=7.13вит.


Принимается ближайшее большее число витков тормозной обмотки: 9 вит. (числа витков на тормозной обмотке реле ДЗТ-11 могут быть установлены: 1, 3, 5, 7, 9, 11, 13, 18 и 24).

7) Определим коэффициент чувствительности защиты при КЗ в зоне действия, когда ток повреждения проходит только через ТТ сторон 110 кВ и 35 кВ и торможение отсутствует из выражения:


 (8.11)


где  - ток в первичной обмотке НТТ реле ДЗТ при условии, что он проходит по ТТ только одной из сторон, определяется приведением минимального первичного тока КЗ к вторичной цепи этих ТТ с учетом вида повреждения, схем соединения ТТ и обмоток защищаемого трансформатора:


 (8.12)

Iр.мин вн=(1.5×1990) ×5/150=99.5 А

Iр.мин.сн=(1.5×1140) ×5/300=28.5 А


Ток срабатывания реле ДЗТ при выбранном числе витков обмотки на стороне 110 кВ wнеосн1=20 :

Iс.р=100/20=5 А,


Ток срабатывания реле ДЗТ при выбранном числе витков обмотки на стороне 35 кВ wнеосн2=13 :

Iс.р.=110/13=7.7 А,


Коэффициенты чувствительности Kч1=99.5/5=19.9>1,5 , Кч2=28.5/7.7=3.7>1,5 . Окончательно принятый ток срабатывания защиты при Iс.р.осн=7.7 А (см. табл. 6.2) Iс.з.=866 А


8.1.2 Максимальная токовая защита с пуском по напряжению

Максимальная токовая защита (МТЗ) служит для защиты от токов внешних КЗ.

1) Выбор тока срабатывания максимальной защиты:


 (8.13)


где kн – коэффициент надежности, обеспечивающий надежное несрабатывание защиты путем учета погрешности реле с необходимым запасом, kн=1,2;

kсзп – коэффициент самозапуска двигателей нагрузки, kсзп=1, т.к. защита имеет пуск по напряжению, посредством которого защита отстроена от самозапуска;

kв – коэффициент возврата реле, для реле РТ-80 kв= 0,8.

1,4 – коэффициент допустимой перегрузки;

Iт.ном – номинальный ток трансформатора на соответствующей стороне.


Iс.з.в=1.2×1×1.4×10000/0.8×Ö3×110=110.2 А

Iс.з.с=1.2×1×1.4×10000/0.8×Ö3×35=346.4 А

Iс.з.н=1.2×1×1.4×10000/0.8×Ö3×10=1212.43 А


Определим ток срабатывания реле по формуле (8.5):

 Iс.р.в=110.2×Ö3×5/150=6.4 А,


Выберем уставку реле РТ-80/20 Iуст=10 А [10].

Iс.р.в=346.4×Ö3×5/300=9.9 А,


Выберем уставку реле РТ-80/20 Iуст=10 А [10].


Iс.р.в=1212.43×Ö3×5/600=17.5 А,


Выберем уставку реле РТ-80/40 Iуст=20 А [10].

Определим коэффициенты чувствительности по (8.11):

Кч1=99.5/6.4=15.5>1,5; Кч2=28.5/9.9=2.8>1,5.


2) Выбор напряжения срабатывания защиты:


 (8.14)


где     Uном – номинальное напряжение сети.



Определим напряжение срабатывания реле:


 (8.15)

где kн – коэффициент трансформации трансформатора напряжения, установленного на шинах 10 кВ, от которого питаются реле комбинированного пускового органа защиты.


  


Выбираем уставку минимального реле напряжения РН-54/160 Iуст=56 В [10].


3) Напряжение срабатывания фильтр-реле по выражению:


 (8.16)

 

 


По (8.15):


 

 


Напряжение срабатывания реле соответствует минимальной уставке реле типа РНФ-1 с пределами шкалы 6-12 В, Uуст=6 В [10].


4) Выбор времени действия защиты:

 (8.17)


8.1.3 Газовая защита трансформаторов

Газовая защита реагирует на повреждения внутри бака трансформатора, при которых происходит выделение газа или ускоренное протекание масла или смеси масла с газом из бака в расширитель, а также и по другим причинам (междуфазные КЗ, межвитковые замыкания в обмотках, замыкание обмотки на корпус, пожар в стали магнитопровода и др.).

Газовая защита поставляется с газовым реле Бухгольца BF 80/Q (B – реле с двумя элементами, F – с фланцем, 80 – внутренний диаметр фланца в мм, Q – фланец квадратной формы).

 В зависимости от вида и развития повреждения трансформатора возможна последовательная работа сигнального и отключающего элементов реле или их одновременная работа.


8.2 Расчет устройств автоматики установленных на ПС


Устройствами автоматики, установленными на подстанции, предусматривается устранение аварий, связанных:

с повреждениями на шинах 10 кВ;

с повреждениями силовых трансформаторов и трансформаторов с.н.;

с отключением после неуспешного действия АПВ одной из питающих линий.

Аварии ликвидируются действием следующих автоматических устройств:

АПВ выключателей 10 кВ трансформаторов (АПВТ);

АВР секционного выключателя 10 кВ;

АВР секционных отделителей 110 кВ (АО);

АПВ на питающих линиях.

Структурная схема автоматики подстанции представлена на листе.


8.2.1 Устройство АВР секционного выключателя 10 кВ


При повреждении трансформатора Т1 АПВ его выключателя 10 кВ действовать не будет. Оно блокируется при отсутсвии напряжения и включении короткозамыкателя.В этом случае питание шин 1-й секции востанавливается включением от АВР секционного выключателя СВ 10 кВ.Пуск АВР осуществляется вспомогательными контактами короткозамыкателя в момент его включения.Цепь пуска проходит последовательно через вспомогательные контакты короткозамыкателя КЗ1 и выключателя В1.Если включится короткозамыкатель и отключится выключатель В1, то АВР секционного выключателя будет работать с минимальной выдержкой времени t1=1.5с. АВР секционного выключателя должен находится в работе как при двух работающих трансформаторах, так и при одном. В последнем случае АВР будет выполнять роль АПВ секционного выключателя 10 кВ.

 

8.2.2 Устройство АПВ вводного выключателя 10 кВ

Устройсво АПВ выключателя запускается замыканием вспомоготельных контактов выключателя В1, отключившегося защитой.

Действие АПВ будет успешным, если повреждение самоустранится. Если же после АПВ выключатель В1 опять отключится защитой, то схема АПВ выводится из действия. Устройство АПВ подготавливается к новому циклу работы лишь после включения выключателя В1 в работу ключом управления или по каналу ТУ.

Работа АПВ блокируется при повреждении трансформатора Т1, когда действием защит от внутренних повреждений включается короткозамыкатель КЗ1. Вспомогательные контакты включившегося короткозамыкателя размыкают цепь АПВ.

Аналогично выполнена схема АПВ выключателя В2 10 кВ трансформатора Т2.

Устройство АПВ выключателей 10 кВ трансформаторов держат включенными при работе одного и двух трансформаторов. Роль АПВ особенно заметна в обеспечении надежности электроснабжения, когда в работе находится один трансформатор и одна линия.

 

8.2.3 Расчет устройства автоматического повторного включения линии 110 кВ с односторонним питанием

Время срабатывания однократного автоматического повторного включения (АПВ) определяется по следующим условиям:


 (8.18)


где tг.п – время готовности привода, которое в зависимости от типа привода находится в пределах от 0,1 до 0,2 [8], принимаем tг.п= 0,2 с.


 (8.19)


где tг.в. – время готовности выключателя, которое в зависимости от типа выключателя [2], tг.в=2 с;

tв.в. – время включения выключателя [2], tв.в.=0,06 с.


 (8.20)


где tд – время деонизации среды в месте КЗ, составляющее 0,1-0,3 с [8], принимаем tд=0,3 с;

tзап=0,4-0,5 с [8], одинаково для выражений (8.18)-(8.20).

По условию (8.18):

По условию (8.19):

По условию (8.20):

Выбираем t1апв=3с.

Для обеспечения однократности действия АПВ выключателя, оборудованного пружинным или грузовым приводом, минимальное время натяжения пружин или подъема груза (время возврата АПВ tв) должно быть отрегулировано большим максимального времени действия защиты после включения на устойчивое КЗ:


 (8.21)


где tзап=2-3 с [8], принимаем tзап=3 с.



Время срабатывания второго цикла двукратного АПВ выбирается равным [8]:


 (8.22)


Принимаем t2АПВ=15 с.


8.2.4 Расчет параметров автоматического включения резерва

Автоматическое включение резерва (АВР) устанавливаем на секционирующих выключателях 10 и 35 кВ.

1) Напряжение срабатывания (замыкания размыкающих контактов) минимального реле напряжения принимаем, согласно условия:


  (8.23)

 Выбираем уставку реле РН-53/200 Uуст=50 В [10].


2) Напряжение срабатывания максимального реле напряжения, контролирующего наличие напряжения на резервном источнике, определяется из условия отстройки от минимального рабочего напряжения и принимается равным для реле РН-50:


 (8.24)

 


Выбираем уставку реле РН-53/200 Uуст=70 В [10].

3) Определим время срабатывания реле времени пускового органа напряжения.

Время срабатывания реле после неуспешного действия АПВ первого цикла питающей линии 110 кВ:



Время срабатывания реле после неуспешного действия АПВ второго цикла питающей линии 110 кВ:



Очевидно, что в целях ускорения действия АВР1 не следует считаться с возможностью успешного действия АПВ второго цикла, тем более, что вероятность его не велика, а уменьшение времени срабатывания пускового органа АВР1 позволит выбрать меньшую уставку по времени для пускового органа АВР2.

Время срабатывания реле времени пускового органа напряжения прежде всего должно быть на ступень селективности  больше выдержек тех защит, в зоне действия которых КЗ вызывают снижения напряжения ниже напряжения срабатывания минимального реле напряжения или реле времени:


 (8.25)

 (8.26)


где t1 – наибольшая выдержка времени защиты присоединений, отходящих от шин высшего напряжения ПС;

t2 – то же для присоединений, отходящих от шин, где установлен АВР;

t – ступень селективности, принимаемая равной 0,5-0,6 с [8].

По условию (8.25):

По условию (8.26):

Принимаем время срабатывания реле времени пускового органа АВР1 tс.р.=7,5 с. Выбираем реле типа ЭВ-132 с диапазоном уставок от 0,5 до 9,0 с [10].

Выберем уставку реле времени пускового органа устройства АВР2 (на секционирующем выключателе 10 кВ).

Определим время срабатывания реле после неуспешного действия АВР1:



Принимаем время срабатывания реле времени пускового органа АВР2 tс.р.=10 с. Выбираем реле типа ЭВ-142 с диапазоном уставок от 1 до 20 с [10].

9. ОБОСНОВАНИЕ ИЗМЕРИТЕЛЬНОЙ АППАРАТУРЫ


Питание цепей РЗА осуществляется на постоянном оперативном токе от аккумуляторной батареи 220 В. Устройство РЗА всех элементов ПС за исключением воздушных линий электропередачи, секционного выключателя 10 кВ и ТСН размещается на панелях в здании ОПУ. Защита остальных элементов выполнена с использованием оборудования, поставляемого комплектно со шкафами К-37, из которых комплектуется КРУН 10 кВ на переменном (выпрямленном) оперативном токе.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.