Меню
Поиск



рефераты скачать Расчет разветвленной электрической цепи постоянного тока



     Рис.15


U-U.+U,

     Цена деления вольтметра и его пределы измерения увеличи­ваются в га раз, при этом его чувствительность уменьшается во столько же раз.

При последовательном соединении в вольтметре и добавочном сопротивлении устанавливается один и тот же ток

1=1в=1д,.

     1.9 Работа и мощность электрического тока. Закон Джоуля-Ленца.


Работу сил электрического поля, создающего упорядоченное движение заряженных частиц в проводнике, т.е. электрический ток, называют работой тока.

Работа, совершаемая электрическим полем по перемещению заряда q на участке цепи, равна:

и3

A=q•U=I•U•t=I2*R•t= U2/R*t

где I — сила тока на данном участке, U — напряжение на участке цепи, t — время прохождения тока по участку цепи, q == It — электрический заряд (количество электричества), протекающий через поперечное сечение проводника за промежуток времени t. Единицей измерения работы служит джоуль: 1 Дж = 1 А* 1 В* 1 с. 1 Дж есть работа постоянного тока силой в 1 А в течение 1 с на участке напряжением в 1 В.

По закону сохранения энергии эта работа равна изменению энергии проводника.

     Мощность электрического тока при прохождении его по про­воднику с сопротивлением R равна работе, совершаемой током за единицу времени:

P=A/t=I*U=U2*R

     Единицей измерения мощности электрического тока в СИ служит ватт: 1 Вт = 1 Дж/с. Работу тока можно также определить следующим образом:

A=P*t

Единицей измерения работы также является киловатт-час (кВт • ч) или ватт-час (Вт • ч):

1Вт*ч=3.6*102 Дж

В этих единицах работу обычно выражают в электротехнике. Полную мощность, развиваемую источником тока с ЭДС  и внутренним сопротивлением г, когда во внешней цепи включена нагрузка с сопротивлением R, определяют по формуле:

P=I(R+r) =IR+Ir=I*I*(R+r) =Ie

Полная мощность идет на выделение тепла во внешнем и внутреннем сопротивлении.

Полезная мощность (мощность, выделяемая во внешнем со­противлении) равна:

Pполез=I2R=e2R/(R+r)2

Она используется в электронагревательных и осветительных приборах.

Теряемая мощность (мощность, выделяемая во внутреннем сопротивлении) равна:

Pтер=I2r=e2r/(R+r)2

Она не используется.

Мощность тока во всей внешней цепи при любом соединении равна сумме мощностей на отдельных участках цепи.

Работа электрического поля приводит к нагреванию провод­ника, если на участке цепи под действием электрического поля не совершается механическая работа и не происходят химические превращения веществ. Поэтому энергия (количество теплоты), выделяемая на данном участке цепи за время t, равна работе электрического тока:

Q=A

Количество теплоты, выделяющееся проводником при нагре­вании его током, определяют по закону Джоуля-Ленца:

Q = I2 Rt или

 Q=I *U * t

Этот закон был установлен экспериментально английским ученым Джеймсом Джоулем (1818-1889) и русским ученым Эмилием Христиановичем Ленцем (1804—1865) и сформулирован сле­дующим образом.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

При последовательном соединении проводников с сопротив­лением R1 и R2 количество теплоты, выделенное током в каждом проводнике, прямо пропорционально сопротивлению этих про­водников:

 Q1/Q2 =R1/R2, т.к. I1 = I2 при последовательном соединении

Количество теплоты, выделенное током в параллельно соеди­ненных двух участках цепи без ЭДС с сопротивлениями 2^ и И^, обратно пропорционально сопротивлению этих участков:

Q1/Q2 =R1/R2, т.к.  U1 = U2 при параллельном соединении

     1.10. Электрический ток в металлах.

     Прохождение тока через металлы (проводники I рода) не со­провождается химическим изменением, следовательно, атомы металла не перемещаются вместе с током. Согласно представле­ниям электронной теории, положительно заряженные ионы (или атомы) составляют остов металла, образуя его кристаллическую решетку. Электроны, отделившиеся от атомов и блуждающие по металлу, являются носителями свободного заряда. Они участву­ют в хаотическом тепловом движении. Эти свободные электроны под действием электрического поля начинают перемещаться упорядоченно с некоторой средней скоростью. Таким образом, прово­димость металлов обусловлена движением свободных электро­нов. Экспериментальным доказательством этих представлений явились опыты, выполненные впервые в 1912 г. советским акаде­миком Леонидом Исааковичем Мандельштамом (1879-1944) и Николаем Дмитриевичем Папалекси (1880-1947), но не опубли­кованные ими. Позже в 1916 г. американские физики Т.Стюарт и Ричард Чейс Толлин (1881-1948) опубликовали результаты своих опытов, оказавшихся аналогичными опытам советских ученых.

     Концы проволоки, намотанной на катушку, припаивают к двум изолированным друг от Друга металлическим дискам. При помощи скользящих контактов (щеток) к концам дисков присо­единяют гальванометр.

     Катушку приводят во вращение, а затем резко останавлива­ют. Если предположить, что в металле есть свободные заряды, то после резкой остановки катушки свободные заряженные частицы будут двигаться некоторое время относительно проводника по инерции. Следовательно, в катушке возникнет электрический ток, который из-за сопротивления проводника будет длиться не­большое время. Направление этого тока позволит судить о знаке тех частиц, которые двигались по инерции. Так как возникаю­щий ток зависит от величины и массы зарядов, то этот опыт по­зволяет не только предположить существование в металле свобод­ных зарядов, но и определить знак зарядов, их массу и величину (точнее, определить удельный заряд — отношение заряда к массе).

Опыт показал, что после остановки катушки в гальванометре возникает кратковременный электрический ток. Направление этого тока говорит о том, что по инерции движутся отрицательно заряженные частицы. Измерив величину заряда, переносимого этим кратковременным током через гальванометр, удалось опре­делить отношение величины свободных зарядов к их массе. Оно оказалось равным е/т = 1,8 • 1011 Кл/кг, что совпадает со значе­нием такого отношения для электрона, найденным ранее другими способами.

Итак, опыт показывает, что в металлах имеются свободные электроны, упорядоченное движение которых создает в металлах электрический ток.

Под влиянием постоянной силы со стороны электрического поля электроны в металле приобретают определенную скорость упорядоченного движения, которая является постоянной. Упоря­доченное движение электронов в металле можно рассматривать как равномерное движение, т.к. со стороны ионов кристалличес­кой решетки на них действует некоторая тормозящая сила — при столкновениях с ионами свободные электроны передают им кине­тическую энергию, приобретенную при свободном пробеге под действием электрического поля. Следовательно, средняя ско­рость упорядоченного движения электронов пропорциональна напряженности электрического поля в проводнике v см Е. Учиты­вая связь напряженности и разности потенциалов на концах проводника (Е = U/d), можно сказать, что скорость движения электронов пропорциональна разности потенциалов на концах проводника v ~ U.

     От скорости упорядоченного движения частиц зависит сила тока в проводнике: I = q0nv S, поэтому сила тока пропор­циональна разности потенциалов на концах проводника I ~ U, что дает качественное объяснение закона Ома на основе электронной теории проводимости металлов.

     Нагревание проводника при прохождении по нему постоянного тока можно объяснить тем, что кинетическая энергия электронов передается при столкновении ионов кристаллической решетки.

     Количественную теорию движения электронов в металле можно построить на основе законов квантовой механики, класси­ческая механика Ньютона неприменима для описания этого движения.


     1.11. Электрический ток в электролитах. Закон электролиза

              (закон Фарадея).

     Растворы, проводящие электрический ток, называются электролитами. Ток в электролите обусловлен движением поло­жительных и отрицательных ионов, т.е. осуществляется ионной

проводимостью.

     Электролитами являются растворы кислот, щелочей и солей, а также расплавленные соли. Электролиты иначе называют про­водниками II рода (проводники с ионной проводимостью). Про­хождение тока в электролитах связано с переносом вещества.

     Ионами называют атомы или молекулы, потерявшие или присоединившие к себе один или несколько электронов. Положи­тельно заряженные ионы называют иначе катионами (ионы ме­таллов в растворах солей, водорода в растворе кислот), а отрица­тельно заряженные — анионами (ионы кислотных остатков и гидроксильной группы ОН~).

     Пластины, создающие электрическое поле в электролите, на­зывают электродами. Электрод, который соединен с положитель­ным полюсом источника тока, называется анодом, а электрод, соединенный с отрицательным полюсом, — катодом. Возникно­вение ионов в электролитах объясняется процессом электролити­ческой диссоциации — распадом молекул растворенного вещест­ва на положительные и отрицательные ионы под действием растворителя. Молекулы растворяемых веществ состоят из взаи­мосвязанных ионов противоположного знака, которые удерживаются друг около друга электри­ческими силами притяжения.

     Взаимодействие этих молекул с полярными молекулами рас­творителя — воды — приводит к уменьшению силы взаимодейст­вия притяжения ионов в молекулах (диэлектрическая проницае­мость воды равна 81). При хаотическом тепловом движении молекул растворенных веществ и растворителей происходят их столкновения, которые приводят к распаду молекул на отдельные разноименно заряженные ионы.

     Степенью диссоциации, а называют долю молекул растворен­ного вещества, распадающихся на ионы, т.е. это отношение числа молекул п, диссоциировавших на ионы, к общему числу молекул растворенного вещества N

     Степень диссоциации зависит от температуры, диэлектричес­кой проницаемости растворителя и концентрации электролита. При повышении температуры степень диссоциации возрастает, т.к. тепловое движение способствует разрыву молекул на ионы и, следовательно, концентрация ионов увеличивается. Чем больше диэлектрическая проницаемость £ растворителя, тем выше сте­пень диссоциации, поскольку сила взаимодействия ионов в моле­куле электролита в растворе уменьшена b£ раз.

     Ионы разных знаков могут объединяться (рекомбинировать) в нейтральные молекулы при тепловом хаотическом движении ионов в растворе. В результате в растворе при неизменных усло­виях устанавливается динамическое равновесие между процесса­ми электролитической диссоциации и рекомбинации ионов, при котором число молекул, распадающихся на ионы в единицу вре­мени, равно числу пар ионов, которые за это время воссоединяют­ся в нейтральные молекулы- Ионы в электролитах движутся хао­тически до тех пор, пока в жидкость не опускаются электроды. Тогда на хаотическое движение ионов накладывается их упорядо­ченное движение к соответствующим электродам. В жидкости при этом возникает электрический ток.

     Прохождение тока через электролит сопровождается выделе­нием на электродах составных частей растворенного вещества — электролизом. Положительно заряженные ионы (катионы) дви­жутся к катоду и приобретают на этом электроде недостающие электроны. Отрицательно заряженные ионы (анионы) отдают аноду лишние электроны. Таким образом, на аноде происходит реакция окисления, а на катоде — восстановления.

Электролизом называют процесс выделения на электродах веществ, связанный с окислительно-восстановительными реак­циями.

Количественные характеристики электролиза определяются законами электролиза (законами Фарадея).

     Первый закон электролиза (первый закон Фарадея)

Масса вещества, выделившегося на электроде за время Д? при прохождении электрического тока, пропорциональна силе тока и времени.

Коэффициент пропорциональности k называется электрохи­мическим эквивалентом вещества. Он численно равен массе

вещества, которые выделяется при переносе ионами через электро­лит единичного заряда. Единица измерения электрохимического эквивалента k = [кг/Кл].

     Второй закон электролиза (второй закон Фарадея) устанавливает пропорциональность между электрохимическим и химическим эквивалентом вещества:

k =1/eNa * m / n

где/; — молярная масса вещества, п — валентность, Na — число  Авогадро, e— заряд электрона, m / n — химический эквивалент (или грамм-эквивалент) вещества.

Произведение заряда электрона на постоянную Авогадро носит название постоянной (числа) Фарадея:

F=e Na

Законы Фарадея можно объединить выражением:

т. = 1/F * m / n IDt

Это выражение называют объединенным законом электроли­за Фарадея.

Постоянная Фарадея численно равна электрическому заряду, который нужно пропустить через электролит для выделения на электроде массы любого вещества, равной в килограммах отноше­нию молярной массы вещества к валентности. Значение числа Фарадея в СИ:

F = 96485 Кл/моль

Электрический заряд q любого иона согласно объединенному закону Фарадея равен:

q= +- nF/ Na

Заряд одновалентного иона (л = 1) равен по абсолютному зна­чению заряду электрона:

q=e=1,602*10-19 Kл

     Таким образом, любой электрический заряд является крат­ным элементарному заряду — заряду электрона е.

Электролиз широко применяется в различных электрохими­ческих производствах. Например, это электролитическое получе­ние металлов из водных растворов их солей и из расплавленных солей; гальваностегия, гальванопластика, электрополировка. Электролитическое получение металлов из водных растворов их солей может быть осуществлено рафинированием или электроэкстракцией.

     Рафинирование представляет собой очищение металла от не­большого количества примесей путем электролиза с активным анодом (в качестве анодов в электролитическую ванну помещают металл с примесями), электролитом служит раствор соли очища­емого металла. При электролизе такой анод растворяется, приме­си оседают на дно, а на катоде выделяется чистый металл. Рафи­нированием получают чистые медь, серебро и золото.

     Электроэкстракцией называется извлечение металла из электролита при неактивном аноде. Электролитом служит вод­ный раствор соли металла, выделяющегося на катоде, а на аноде выделяются кислород или хлор. Таким способом получают чис­тые цинк и никель.

     Электролиз расплавленных солей проводится с помощью не­активных (угольных) электродов и при высокой температуре, применяется при добывании металлов, реагирующих с водой и поэтому не выделяющихся из водных растворов. Таким путем добывают магний, алюминий, бериллий, литий, калий, кальций и другие металлы.

     Гальваностегией называется покрытие металлических пред­метов слоем другого металла с помощью электролиза на активном аноде. Таким путем пользуются для покрытия предметов не окис­ляющимся на воздухе металлом, чтобы предохранить их от кор­розии. Например, при никелировании, хромировании и т.д. Галь­ваностегией также пользуются для изготовления украшений (серебрение и золочение).

     Гальванопластикой называется получение металлических копий с рельефных изображений на каких-либо поверхностях путем электролиза при активном катоде. Гальванопластика имеет большое значение, например, для изготовления клише, применяемых в литографии.

     Электрополировка заключается в выравнивании металличес­кой поверхности с помощью электролиза. В электролитическую ванну в качестве анода опускается предмет, поверхность которого должна быть отполирована. При электролизе в раствор уходит больше всего вещества с выступающих неровностей на поверхнос­ти анода, т.е. происходит его полировка.






























2 Расчётная часть


    2.1Задание на курсовую работу


     Расчет разветвлённой электрической цепи постоянного тока.


     Для заданной электрической цепи необходимо:


1)         Записать систему уравнений по законам Кирхгофа (без расчетов);

2)         Определить все токи и напряжения методами контурных токов и узловых потенциалов;

3)         Проверить результаты расчетов по уравнениям баланса мощностей;

4)         Построить потенциальные диаграммы для двух замкнутых контуров.


ЭДС=E1=E2=50 В


Резисторы  R1=12 Ом

                    R2=24 Ом

                    R3=15 Ом

                    R4=18 Ом

                    R5=30 Ом

                    R6=30 Ом

                    R7=30 Ом























2.2 Составление уравнений по двум законам Кирхгофа.


Записываем уравнения по первому закону Кирхгофа для любых двух узлов:

Узел А: I1+I2+I3=0

Узел B: I3+I4+I5=0


1)     Выбираем независимые контуры и направления их обходов.


3) Записываем уравнения по второму закону Кирхгофа для выбранных независимых контуров.

I1*(R1+R6)-I2*R3=E1

I3*R2+I2*R3-I4*R4=0

I4*R4-I5*R7-I5*R5=E2


4) Подставим численное значение:
 

I1+I2-I3=0

I3+I4+I5=0

I1*(12+30)-I2*15=50

I3*24+I2*15-I4*18=0

I4*18-I5*30-I5*30=50














     2.3 Определение всех токов и напряжений методами контурных

           токов.

 


1)     Выбираем независимые контуры:

R6,E1,R1,R6;

R3,R2,R4;

R4,E2,R5,R7;


2)     Полагаем, что в каждом контуре течет свой контурный ток: I11,I22,I33.


3)     Произвольно выбираем их направления.


4)     Записываем уравнения по второму закону Кирхгофа относительно контурных токов, для выбранных независимых контуров:


I11(R1+R3+R6)-I22*R3=E1

I22(R2+R3+R4)-I11*R3-I33*R4=0

I33(R4+R5+R7)-I22*R4=E2


Подставим численные значения:


I11*57-I22*15+0=50

-I11*15+I22*57-I33*18=0

0-I22*18+I33*78=50


5)     Решаем полученную систему уравнений через определители:

Главный определитель:

         |57    -15    0|

D=     |-15   57  -18| = 253422+0+0-0-17550-18468=217404

         |0     -18   78|      


Вспомогательный определитель 1:

         |50   -15    0|

D1=   |0      57 -32| = 222300+0+13500-0-0-16200=219600

         |50   -18  78|


Вспомогательный определитель 2:

         |57    50    0|
D2=   |-15   0   -18| = 0+0+0-0-(-58500)-(-51300)=109800

         |0      50  78|


Вспомогательный определитель 3:

         |57   15   50|
D3=   |-15  57     0| = 162450+13500+0-0-11250-0=164700

         |0    -18   50|


I11=D1/D=219600/217404=1.01(A)

I22=D2/D=109800/217404=0.505 (A)

I33=D3/D=-164700/217404=0.757 (A)


I1=I11=1.01 (A)

I2=I22=-0.505 (A)

I3=I11-I22=1.01-0.505=0.505 (A)

I4=I22-I33=0.505-0.757=-0.252 (A)

I5=I33=0.757 (A)


6)Энергетический баланс мощностей


На основании закона сохранения энергии количество теплоты выделяющиеся в единицу времени на резисторах должно равняться

энергии доставляемой за это же время источниками энергии.

                                              

                                                 SIE=SI2R


E1*I1+E2*I5=I12 *(R1+R5)+I22*R2+I32 *R3+I42*R4+I52*(R5+R7)

50.5+37.5=32.64+6.120+3.825+0.068+34.382

88.35=77.055 (Вт)










     2.4 Метод узловых потенциалов.



1) Выбираем базисный узел (целесообразно за базисный принимать тот узел, в котором пересекается больше всего ветвей):

V3=0


2) Задаемся положительными направлениями узловых потенциалов от базисного узла.


3) Записываем собственные и взаимные проводимости узлов, исключая базисный:

g11=0.0238+0.0416+0.0666=0.132 (Сим)

g22=0.0416+0.0555+0.0166=0.1137 (Сим)

g12=0.0416 (Сим)


4) Введем узловые токи для всех узлов, исключая базисный:

I11,I22


I11=1.1904 (A)

I22= -0.8333 (A)


Узловой ток равен алгебраической сумме токов от действия ЭДС ветвей пересекающихся в данном узле.

Если ЭДС направлено к узлу, то ЭДС записываем со знаком «+»,
в противном случае «-».


5)         Записываем систему уравнений:


 V1*g11-V2*g12=I11

 V2*g22+V1*g21=I22


g12=g21=0.0416 (Сим)


V1*0.132+V2*(-0.0416)=1.1904

V2*0.1137+V1*(-0.0416)= -0,8333


V1*0.132-V2*0.0416=1.1904

-V1*(-0.0416)+V1*0.132= -0.8333

         |0.132   -0.0416|

  D=   |-0.0416   0.132| = 0.0174-0.0174=0.0157


         |1.1904   -0.0416|

 D1=  |-0.8333     0.132| = 0.1571+0.0346=0.1225



         |0.132        1.1904|

 D2=  |-0.0416   -0.8333| = (-0.1099)-(-0.0495)= -0.0604


V1=D1/D= 0.125/0.0157= 7.8025

V2=D2/D= -0.0604/0.0157= -3.8471


I1=(V3-V1+E1)/(R1+R6)=42.1975/42=1.0047 (A)

I2=(V1-V2)/R2=11.6496/24=0.4854 (A)

I3=(V3-V1)/R3= -7.8025/15= -0.5201 (A)

I4=(V3-V2)/R4= 0.2137 (A)

I5=(V3-V2+E2)/(R5+R7)= 53.8471/60=0.8974 (A)




























     2.5 Энергетический баланс мощностей


На основании закона сохранения энергии количество теплоты выделяющиеся в единицу времени на резисторах должно равняться энергии доставляемой за это же время источниками энергии.


SIE=SI2R


Энергетический баланс мощностей методом контурных токов:


E1*I1+E2*I5=I12 *(R1+R5)+I22*R2+I32 *R3+I42*R4+I52*(R5+R7)

50.5+37.5=32.64+6.120+3.825+0.068+34.382

88.35=77.055 (Вт)

                                            

                                                

Энергетический баланс мощностей методом узловых потенциалов:


E1*I1+E2*I5=I12 *(R1+R5)+I22*R2+I32 *R3+I42*R4+I52*(R5+R7)

50.235+44.87=42.3948+5.6547+4.0575+0.8208+48.318

95.105=101.245 (Вт)



























     2.6 Построение потенциальных диаграмм для двух замкнутых контуров.


Va=0

Vb=Va-I1*R1= -12.05             B (12;-12.0564)

        R=12 (Ом)

Vc=Vb-I3*R3= -19.8579         C (27;-19.8579)

        R=R+15 (Ом)

Vd=Vc-I1*R6= -50.02             D (57;-50.02)

        R=R+30 (Ом)

Va=Vd+E1= 0                         A (57;0)

        R=57 (Ом)


     Рис. 20


Vt=0

Vf=Vt+I5*R5= 22.71               F(30;22.71)

       R=30 (Ом)

Ve=Vf+I5*R7= 45.42              E(60;45.42)

       R=R+30 (Ом)

Vs=Ve-I4*R4= 40.884             S(78;40)

       R=R+18 (Ом)

Vt=Vs-E2= 10                         T(78;10)

       R=78 (Ом)

  

     Рис. 21













Заключение.


     В процессе выполненных заданий я проанализировал схему разветвленной электрической цепи постоянного тока, в полном объёме изучил её работу, различные методы определения токов и напряжений, узловых потенциалов, проверил на практике различные законы Ома, законы Кирхгофа, баланс мощностей. Наглядно графическим методом показал зависимость напряжения от сопротивления.






































Список литературы.


Дятлаф А.А. Яворский Б.М. Курс физики//Высшая школа . 2000г.


Башин М. Л. Теория электрических цепей // Электротехника. 2001г.


Кринина М. Физика для высшеё школы // Физфакультет. 2000г.


Савельев И.Р. Курс общей физики // Москва 2000г.


Шабанова А.Р. Лекции // 2003г.


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.