Меню
Поиск



рефераты скачать Проект осветительной установки свинарника для опоросов



3. РАСЧЁТ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ ОСВЕТИТЕЛЬНЫХ УСТАНОВОК


3.1 Выбор напряжения и схемы питания электрической сети


В общем случае выбор напряжения электрической сети осветительной установки определяется степенью опасности поражения людей и животных электрическим током в рассматриваемом помещении.

В помещениях без повышенной опасности напряжение 220 В допускают для всех светильников общего назначения независимо от высоты их установки.

В помещениях с повышенной опасностью и особо опасных при установке светильников с лампами накаливания на высоте более 2,5 м над полом или обслуживающей площадкой так же допускают напряжение 220 В. При высоте подвеса меньше 2,5 м должны применять светильники, конструкция которых исключает возможность доступа к лампе без специальных приспособлений, либо напряжение должно быть не выше 42 В. Разрешается установка светильников с люминесцентными лампами на высоте менее 2,5 при условии, что их контактные части будут недоступны для случайных прикосновений.

Светильники местного стационарного освещения с лампами накаливания в помещениях без повышенной опасности должны питаться напряжением 220 В, а в помещениях с повышенной опасностью и особо опасных - не выше 42 В. Для питания переносных светильников в помещениях с повышенной опасностью и особо опасных также должно применяться напряжение не выше 42 В. При этом применяют трансформаторы типа ОСОВ-0.25 и ТСЗИ.

В случаях, если опасность поражения электрическим током усугубляется теснотой, неудобным положением работающего, соприкосновением с большими металлическими хорошо заземленными поверхностями, питание переносных светильников должно быть не выше 12 В.

Наиболее часто для питания электрического освещения в сельскохозяйственном производстве применяют систему трехфазного тока с глухим заземлением нейтрали напряжением 380/220 В. Источники света при этом подключают, как правило, на фазное напряжение. Газоразрядные лампы высокого давления (ДРЛ, ДРИ, ДНаТ, ДКсТ и др.), рассчитанные на напряжение 380 В, допускается подключать на линейное напряжение 380 В системы 380/220 В.

Осветительные и облучательные сети, прокладываемые от источников питания до потребителей, состоят из групповых и пи тающих линий. Групповые линии прокладывают от групповых щитков до светильников или облучателей и штепсельных розеток. К питающим линиям относят участки сети от источника питания до групповых щитков.

Питающие линии обычно выполняют пятипроводными (трёхфазными), а групповые - трех- и четырёхпроводными в зависимости от нагрузки и длинны.

Питающие линии могут быть магистральными, радиальными или радиально-магистральными. Наиболее широкое распространение на сельскохозяйственных предприятиях нашли радиально-магистральные схемы.

Схемы питания осветительной или облучательной установки выбирают по следующим условиям: надёжность электроснабжения, экономичность (минимальные капитальные и эксплуатационные затраты), удобство в управлении и простота эксплуатации.

Радиальные сети по сравнению с магистральными имеют меньшее сечение проводов, меньшие зоны аварийного режима при неисправности в питающих сетях, но большую общую протяжённость. Необходимость применения радиальной сети может быть также вызвана условиями взаимной планировки мест подстанций и осветительных щитков, при которых трасса магистральной питающей сети будет чрезмерно удлинена.

Применение чисто магистральной сети целесообразно для сокращения общей протяженности. В месте разветвления линии устанавливают распределительный пункт, от которого могут отходить как магистральные, так и радиальные групповые линии.

При планировке сети возможны различные варианты её выполнения, даже в пределах одной радиально магистральной системы. Когда применение одного варианта не очевидно, тогда необходимо прибегать к технико-экономическому сопоставлению вариантов.

Помещения относится к помещениям без повышенной опасности. ПУЭ в этом случае допускает применение напряжения 220В. При этом конструкция светильника должна исключать доступ к лампе без специальных приспособлений (для светильников с лампами накаливания) и случайное прикосновение к контактным частям (для светильников с люминесцентными лампами).


3.2 Определение количества и мест расположения групповых щитков, выбор их типа и компоновка трассы сети


Количество групповых щитков осветительной установки определяют, исходя из размеров здания и рекомендуемой протяжённости групповых линий. Принимают длину четырехпроводных трехфазных групповых линий напряжением 380/220В равной 80 м, напряжением - 220/127 В - 60 м и, соответственно, двухпроводных однофазных - равной 35 м и 25 м. Однофазные групповые линии целесообразно применять в небольших конторах, а также в средних помещениях при установке в них светильников с лампами накаливания мощностью до 200 Вт и с люминесцентными лампами. Применение трехфазных групповых линий экономично в больших помещениях (птичниках, коровниках и т.д.), освещаемых как лампами накаливания, так и газоразрядными лампами.

Ориентировочное количество групповых щитков можно определить по формуле:


 (3.1)


где nщ - рекомендуемое количество групповых щитков, шт;

А, В - длина и ширина здания, м;

r - рекомендуемая протяженность групповой линии, м.

Для уменьшения протяженности и сечения проводов групповой сети щитки устанавливают по возможности в центре электрической нагрузки, координаты которого


;  (3.2)


где хц, уц - координаты центра электрических нагрузок в координатных осях х, у;

Рi - мощность i-й электрической нагрузки, кВт;

хi , уi - координаты i-й электрической нагрузки в координатных осях х, у;

При выборе мест установки групповых осветительных щитков учитывают также и то, что групповые щитки, предназначенные для управления источниками оптического излучения, устанавливают в местах, удобных для обслуживания: проходах, коридорax и на лестничных клетках. Щитки, имеющие отключающие аппараты, устанавливают на доступной для обслуживания высоте (1,8...2,0 м от пола).

При компановке внутренних сетей светильники объединяют в группы так, чтобы на одну фазу группы приходилось не более 20 ламп накаливания, ДРЛ, ДРН, ДНаТ и розеток или 50 люминесцентных ламп.

Осветительные щитки выбирают в зависимости от количества групп, схемы соединения, аппаратов управления и защиты, а также по условиям среды, в которых они будут работать. В зависимости от условий среды в помещениях применяют групповые щитки незащищенные, защищенные и защищенные с уплотнением. Щитки защищенные с уплотнением предназначены для установки в производственных помещениях с тяжелыми условиями среды. Большое значение имеет также выбор трассы сети, которая должна быть не только кратчайшей, но и наиболее удобной для монтажа и обслуживания. Прокладка сети по геометрически кратчайшим трассам практически невозможна или нецелесообразна по причинам конструктивного и технологического характера. Трассу открытой проводки, как по конструктивным, так и по эстетическим соображениям намечают параллельно и перпендикулярно основным плоскостям помещений. Только при скрытой проводке на горизонтальных плоскостях можно применять прямолинейную трассировку между фиксированными точками сети.

Выбранные трассы питающих и групповых линий, места установки групповых щитков, светильников, выключателей и розеток наносят на план помещения согласно условным обозначениям, принятым в ГОСТ 21.608 - 84 и ГОСТ 2.754 – 72.

В соответствии с результатами светотехнического расчёта вычерчиваем план здания (формат А1). Наносим на него в виде условных обозначений светильники (ряды светильников). Принимаем щиток с трехфазными группами. Рекомендуемая протяжённость линий r = 80 м.

Вычисляем требуемое количество групповых щитков по формуле (3.1):



Принимаем один щиток. Для определения места его установки рассчитываем координаты центра электрической нагрузки. Исходя из количества светильников и мощности ламп, в каждом помещении определяем установленную мощность по формуле


Рi = Ni ·nci ·Pлi (3.3)


Р1=19·1·0,036=0,684 кВт, Р7 =2·1·0,1=0,2 кВт,

Р2=11·1·0,036=0,396 кВт, Р8=2·1·0,04=0,08 кВт,

Р3=17·1·0,036=0,612 кВт, Р9 =1·1·0,04=0,04 кВт,

Р4(1)=1·1·0,075=0,075 кВт, Р10=2·2·0,036=0,144 кВт,

Р4(2) =1·2·0,06=0,06 кВт, Р11 = 1·1·0,1=0,1 кВт,

Р4(3) = 1·1·0,06=0,06 кВт, Р12 = 2·2·0,036=0,144 кВт,

Р5 =2·1·0,04=0,08 кВт, Р13= 1·1·0,06=0,06 кВт

Р6 =2·1·0,036=0,072 кВт, Р14 =8·1·0,036=0,288 кВт,

Приняв, что нагрузка каждого помещения сосредоточена в центре, и построив оси координат, определим координаты центров всех помещений, считая левый нижний угол началом координат. Данные сводим в таблицу 5.


Таблица 5 – определение координат центра нагрузок

№ по плану и наименование помещения

Руст,кВт

Х,м

У,м

1 Помещение для опоросов

0,684

31,7

13,5

 

2 Помещение для поросят отъемышей и ремонтных свинок

0,396

59,3

9

 

3 Помещение холостых супоросных маток и отделение для хряков

0,612

32,6

4,5

 

4 Тамбур

0,075

0,06

0,06

50,3

71,1

71,1

1,6

13,3

4,7

 

5 Инвентарная

0,08

68,9

9

 

6 Помещение теплового узла

0,072

68,9

16,2

 

7 Электрощитовая

0,2

70,2

1,6

 

8 Машинное отделение с навозозборником

0,08

9,5

16,2

 

9 Приточная венткамера

0,04

10,9

1,6

 

10 Вспомогательное помещение

0,144

8,6

9

 

11 Площадка для взвешива-ния

0,1

11,3

9,4

 

12 Служебное помещение

0,144

3,6

1,6

 

13 Санузел

0,06

7,7

1,6

 

14 Коридор

0,288

3,4

10,8

 


Определяем координаты центра электрических нагрузок всего здания по формуле: (3.2)



С учётом рассчитанного центра электрических нагрузок и с целью обеспечения удобства обслуживания и экономии проводникового материала размещаем групповой щиток в помещении №4 на стене, максимально близко к центру электрической нагрузки, с координатами x=51 м; y=1,6 м.

Определяем требуемое количество групповых линий в групповом щитке:


 (3.4)


n=2.

Для удобства управления освещением в разных половинах здания принимаем три группы.

Выбираем из [4] табл. П.5.2 групповой щиток ЯРН 8501-8301 с 6-ью однополюсными автоматическими выключателями.

На плане здания намечаем трассы прокладки сетей, места установки выключателей, обозначаем, номера групп и приводим данные светильников.


3.3 Выбор марки проводов (кабелей) и способов прокладки сети

Осветительную электропроводку, как правило, следует выполнять проводами и кабелями с алюминиевыми жилами. С медными жилами ее выполняют только во взрывоопасных помещениях классов В-1 и В-la. Гибкие кабели с медной жилой и резиновой изоляцией марки КРПТ, КРПГ применяют для подключения переносных или передвижных источников оптического излучения.

При проектировании сельскохозяйственных объектов используют следующие способы прокладки электропроводок: на тросе; на лотках и в коробах; в пластмассовых и стальных трубах; металлических и гибких резинотехнических рукавах; в каналах строительных конструкций; проводом и кабелем по строительным основаниям и конструкциям (ОСТ 70.004.0013 - 81).

При выборе того или иного способа прокладки электропроводки необходимо учитывать условия среды помещения, его строительные особенности, архитектурно-художественные экономические требования.

В помещении №1,2,3 и 5 способ прокладки кабеля – на тросе, во всех остальных помещениях – скрытая проводка.

По категории помещения и условиям окружающей среды из табл. П.5.1 [4] выбираем кабель АВВГ.

Составляем расчётную схему сети, на которой указываем номера расчетных точек, длины участков и присоединенные мощности.


Рис. 2 – Расчётная схема осветительной сети


3.4 Защита электрической сети от аварийных режимов


К аварийным режимам в осветительных сетях относят: токи короткого замыкания, неполнофазный режим работы (для трёхфазной линии), токи утечки. Для защиты от токов короткого замыкания служат автоматические выключатели ВА 14 – 26. Для защиты от токов утечки согласно ПУЭ принимаем УЗО с уставкой 30 мкА.


3.5 Расчёт и проверка сечения проводников электрической сети


Принимаем допустимые потери напряжения ΔU = 2,5% и коэффициент спроса Кс=0,8[4] П.5.5.Тогда расчётное значение сечения проводника на участке:


 (3.5)


где S – сечение проводов участка, мм2;

ΣМ = ∑Р·l – сумма моментов рассчитываемого и всех последующих участков с тем же числом проводов, что и у рассчитываемого, кВт·м;

Σα·m – сумма моментов всех ответвлений с числом проводов, отличающихся от числа проводов рассчитываемого участка, кВт·м;

α – коэффициент приведения моментов, зависящий от числа проводов рассчитываемого участка и в ответвлениях [4] П.5.3;

С – коэффициент зависящий от материала проводов, системы и напряжения сети,

ΔU – допустимая потеря напряжения, % от Uн;

l – длина участка, м.

Определяем сечение линии от ВРУ до щитка освещения:




С учётом механической прочности принимаем ближайшее, стандартное большее сечение S0-1=2,5 мм2.

Принимаем для люминесцентных светильников соsφл.л.1=0,85, для ламп накаливания cosφл.н=1,0.

Определим коэффициент мощности на участке 0-1:


 (3.6)


Определяем расчётный ток на участке 0-1:

 (3.7)


где Uл=380В

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения Iдоп=19А.


Iдоп ≥ Iр (3.8)


19 ≥ 5,7 А – условие выполняется.

Определяем действительную потерю напряжения в магистрали.


 (3.9)


По расчётному току выбираем ток уставки электромагнитного расцепителя автоматического выключателя.


Iу ≥1,4* Iр. =1,4*5,7= 7,98А (3.10)


Iу = 8 > 7,98 А (из табл. П.5.10[3] )

Проверяем выбранное сечение на соответствие вставке защитного аппарата


Iдоп ≥ β·Iу (3.11)


где β – коэффициент, учитывающий нормированное соотношение между длительно допустимым током проводников и током уставки защитного аппарата (П.5.1[3]) β = 1.

Iдоп = 19А > 1 · 8 = 8 А - условие выполняется.

Определяем сечение первой групповой линии:




С учётом механической прочности принимаем ближайшее, стандартное большее сечение S1-2=2,5 мм2. На остальных участках данной группы сечение кабеля также будет S=2,5 мм2.

Определим коэффициент мощности на участке 1-2 (по формуле 3.6) :

Определяем расчётный ток на участке 1-2 (по формуле 3.7):

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения Iдоп=19А (по формуле 3.8):

Iдоп ≥ Iр

19 ≥ 2,4А – условие выполняется.

Определяем действительную потерю напряжения в линии 1 (по формуле 3.9).



Потеря напряжения на последующих участках будет ещё меньше.

По расчётному току выбираем ток уставки электромагнитного расцепителя автоматического выключателя. (по формуле 3.10)

Iу ≥ 1,4* Iр. = 1,4*2,4=3,36А

Iу = 4 > 3,36 А (из табл. П.5.10[3] )

Проверяем выбранное сечение на соответствие вставке защитного аппарата (по формуле 3,11)

Iдоп ≥ β·Iу

Iдоп = 19А > 1 · 3,36 = 3,36 А - условие выполняется.

Определяем сечение второй групповой линии:



С учётом механической прочности принимаем ближайшее, стандартное большее сечение S1-23=2,5 мм2. На остальных участках данной группы сечение кабеля также будет S=2,5 мм2.

Определим коэффициент мощности на участке 1-23 (по формуле 3.6):

Определяем расчётный ток на участке 1-23 (по формуле 3.7):

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения Iдоп=19А. (по формуле 3.8)

Iдоп ≥ Iр

19 ≥ 2,56 А – условие выполняется.

По расчётному току выбираем ток уставки электромагнитного расцепителя автоматического выключателя. (по формуле 3.10)

Iу ≥ 1,4* Iр.=1,4*2,56=3,58 А

Iу = 4 > 3,58 А (из табл. П.5.10[3])

Проверяем выбранное сечение на соответствие вставке защитного аппарата(по формуле 3.11)

Iдоп ≥ β·Iу

Iдоп = 19А > 4 А - условие выполняется.

Определяем действительную потерю напряжения в линии 2 (по формуле 3.9).



Потеря напряжения на последующих участках будет ещё меньше.

Определяем сечение третьей групповой линии:



С учётом механической прочности принимаем ближайшее, стандартное большее сечение S1-48=2,5 мм2.

Определим коэффициент мощности на участке 1-48:

Определяем расчётный ток на участке 1-48 (по формуле 3.7):

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения Iдоп=19А (по формуле 3.8).

Iдоп. ≥ Iр.

19 ≥ 0,78 А – условие выполняется.

По расчётному току выбираем ток уставки электромагнитного расцепителя автоматического выключателя. (по формуле 3.10)

Iу ≥ 1,4* Iр.=1,4*0,78=1,09 А

Iу = 1,25 > 1,09 А (из табл. П.5.10[3])

Проверяем выбранное сечение на соответствие вставке защитного аппарата (по формуле 3.11)

Iдоп ≥ β·Iу

Iдоп = 19А > 1·1,25 А - условие выполняется.

Определяем действительную потерю напряжения в линии 3 на участке (1-48) (по формуле 3.9):



Исходя из условий экономии электроэнергии и проводникового материала для подключения осветительного щитка, используем кабель АВВГ 5×2,5, для выполнения групповых линий кабель АВВГ 5×2,5 .


3.6 Мероприятия по повышению коэффициента мощности электрической сети осветительной установки


Повышение коэффициента мощности электроустановок – важная задача, так как низкий cosφ приводит к перерасходу металла на сооружение электрических сетей, увеличивает потери электроэнергии, недоиспользование мощности и снижение коэффициента полезного действия первичных двигателей и генераторов электростанций и трансформаторов электрических подстанций.

Для сельских электроустановок наиболее приемлемым способом повышения коэффициента мощности является компенсация реактивной мощности при помощи статических конденсаторов. Статические конденсаторы имеют очень малые потери мощности, бесшумны в работе, износоустойчивы, просты и удобны в эксплуатации.

Статические конденсаторы могут быть подобраны на малые мощности, что особенно важно для сельскохозяйственных установок.

Кроме того, выбор конденсаторных установок производится с учетом всех приёмников здания.


4. ЭКСПЛУАТАЦИЯ ОСВЕТИТЕЛЬНОЙ УСТАНОВКИ


4.1 Определение мер защиты от поражения электрическим током

Для защиты людей от возможного поражения электрическим током электрические сети здания блока дезинфекции транспортных средств выполняются трёхпроводным кабелем, одна из жил которого выполняет роль специального защитного проводника. К ней подключаются все металлические предметы и корпуса светильников. Защитный проводник соединён с нулевой точкой трансформатора и заземляющим контуром. В помещении установлено УЗО, защищающее от токов утечки более 30 мкА.

При монтаже светильников на тросах несущие тросы зануляют не менее чем в двух точках по концам линии, путём присоединения к защитному (РЕ) проводнику, гибким медным проводником. Соединение гибкого проводника с тросом выполняется с помощью ответвительного зажима.

Сопротивление изоляции кабелей осветительной сети должно быть не менее 0.5МОм.

Светильники во всех помещениях расположены на высоте более 2.5м, что затрудняет к ним доступ без специальных приспособлений и способствует электробезопасности.


4.2 Указания по энергосбережению и эксплуатации осветительной установки

При проектировании осветительной установки были использованы следующие светотехнические решения:

1. для производственных помещений использованы наиболее экономные источники освещения, а именно: газоразрядные лампы низкого давления;

2. стены помещения покрыты побелкой с целью увеличения коэффициента использования светового потока;

3. схема питания освещения - радиальная;

4. принято наибольшее разрешённое напряжение питания;

5. групповой щит установлен в центре электрических нагрузок;

6. лампы имеют диапазон рабочего напряжения равный напряжению питания, что позволяет избежать перерасхода электроэнергии и уменьшения срока службы.

Эксплуатация электрооборудования осуществляется энергетической службой предприятия с участием «Агропромэнерго»

Энергосберегающие мероприятия при эксплуатации осветительных установок:

- своевременная очистка светильников;

- своевременная замена ламп;

- окраска рабочих поверхностей в светлые тона;

- чистка оконных проёмов.


ЛИТЕРАТУРА


1.Светотехническое оборудование в сельскохозяйственном производстве. Справочное пособие. Степанцов В.П.-Мн.: “Ураджай”, 1987г.

2. Правила устройства электроустановок. – М. : Энергоатомиздат, 2000г.

3. Стандарт предприятия. СТП БАТУ01. 11 – 98. Правила оформления дипломных и курсовых проектов (работ) для специальности С. 03. 02. – 00 «Электрификация и автоматизация сельского хозяйства» - Мн.: Ротапринт БАТУ 1999г.

4. Николаёнок М. М., Заяц Е. М. Расчёт осветительных и облучательных установок сельскохозяйственного назначения. Под ред. Зайца Е. М. – Мн.: ООО «Лазурак», 1999г.


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.