Меню
Поиск



рефераты скачать Проектирование электрической сети напряжением 35-110 кВ

Проектирование электрической сети напряжением 35-110 кВ















Тема Проектирование электрической сети напряжением 35-110 кВ


СОДЕРЖАНИЕ

Аннотация

Введение

1. Нагрузочная способность воздушных линий электропередач

2. Анализ исходных данных

2.1 Характеристика электрифицируемого района

2.2 Характеристика потребителей

2.3 Характеристика источника питания

3. Потребление активной и баланс реактивной мощности в проектируемой сети

3.1 Определение потребной району активной мощности и энергии

3.2 Составление баланса реактивной мощности

4. Конфигурация, основные параметры сети

4.1 Составление рациональных вариантов схем сети

4.2 Предварительный выбор напряжения

4.3 Выбор сечений проводов

4.4 Выбор трансформаторов у потребителей

5. Технико-экономическое сравнение вариантов сети

6. Расчёты основных режимов работы сети

6.1 Схема замещения сети и определение её параметров

6.2 Расчет и анализ основных режимов

7. Регулирование напряжения сети

8. Надежность и методы диагностики высоковольтного электрооборудования подстанций

Заключение

Список литературы

Приложения


АННОТАЦИЯ


Выпускная работа содержит расчет районной электрической сети, исходными данными для которой являлось географическое расположение потребителей, их категория по надежности, а так же величина и графики нагрузки.

Для рассчитанной сети произведен расчет и анализ основных режимов работы, для которых затем сделано регулирование напряжения во всех пунктах питания.

Кроме того, рассмотрены вопросы нагрузочной способности воздушных линий электропередач, надежности, методы диагностики высоковольтного электрооборудования подстанций.


ВВЕДЕНИЕ


В первой главе выпускной работы дан обзор научно-технической литературы на тему: «Нагрузочная способность воздушных линий электропередач».

Целью данной выпускной работы является проектирование электрической сети напряжением 35-110 кВ.

В данной выпускной работе был произведён расчет параметров электрической сети, состоящей из пяти пунктов. В расчетной части работы были построены графики нагрузок, рассчитаны максимум нагрузки и часы, в которые он достигается. Также были рассчитаны потребные району активная и реактивная мощности и годовое потребление электроэнергии, составлен баланс реактивной мощности и выбраны компенсирующие устройства, рассчитаны параметры нагрузки с учетом компенсации реактивной мощности

Далее были составлены варианты схемы сети, из которых было выбрано два наиболее рациональных варианты. Для обоих вариантов было выбрано: напряжение для линий, сечения проводов, трансформаторы у потребителей.

Затем был проведен технико-экономический расчет, в результате которого были найдены приведенные затраты обоих вариантов схемы сети. По полученным данным определили самый выгодный вариант. При этом основными критериями послужили существующие нормативы и правила, а также требования к надёжности работы электрической сети.

Выполнен расчет основных режимов работы электрической сети (наибольших нагрузок, наименьших нагрузок, послеаварийный) методом Ньютона на ЭВМ. Далее выполнено регулирование напряжения у потребителей.

В седьмой главе выпускной работы дан обзор научно-технической литературы на тему: «Надежность и методы диагностики высоковольтного электрооборудования подстанций».


1. НАГРУЗОЧНАЯ СПОСОБНОСТЬ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ


В настоящее время значительно повысился интерес к уточнению методов определения допустимых токовых нагрузок на воздушные линии электропередачи (ВЛ), особенно в связи с аварией в Москве в мае 2005 г. и аномально высокими температурами воздуха в августе 2006 г. на юге России. К тому же уже давно назрела необходимость приведения действующих методических указаний по расчету допустимых токовых нагрузок в соответствие с современными техническими и вычислительными возможностями.

Вопросы определения допустимости перегрузки линий сверх экономической плотности тока и при гололедно-ветровых воздействиях стоят очень остро. Нагрузки растут довольно высокими темпами, а сетевое строительство явно отстает. Например, нагрузка Кубанской энергосистемы уже превысила максимум, наблюдавшийся в 1990-1991 гг. Особенно возросло потребление электроэнергии летом при высокой температуре воздуха за счет бытового сектора, перерабатывающей промышленности, строительной индустрии, сферы услуг в быстроразвивающихся регионах страны, например, таких, как Краснодарский край. В этих условиях очень важно иметь инструмент для непрерывного контроля температуры провода при различных погодных условиях, достоверно определять допустимую токовую нагрузку и иметь возможность при угрозе возникновения недопустимой перегрузки линии, в том числе в ремонтных режимах, выполнять мероприятия по разгрузке остающихся в работе ВЛ.

Таким образом, возникают три основные задачи, решение которых позволит более полно использовать нагрузочную способность линий электропередачи и при этом избежать отключений ВЛ и излишних ограничений потребителей:

♦    контроль температуры провода;

♦    определение допустимой температуры провода и допустимых гололедно-ветровых нагрузок;

♦    управление режимами работы электрической сети с целью недопущения аварийной перегрузки линий.

Несмотря на довольно многочисленные исследования вопросов нагрева проводов ВЛ, до сих пор отсутствует определенность в решении этих задач. Сейчас благодаря разработанным техническим и программным средствам, появилась возможность оперативно определять круглый год допустимые электрические и гололедно-ветровые нагрузки, а также проводить натурные испытания на действующих ВЛ и накопление статистических данных по нагреву проводов.

Первая задача - контроль температуры провода. Возможны два основных способа: непосредственный и косвенный (расчетный). В первом случае температура провода измеряется специальными датчиками в контрольных точках ВЛ и эта информация передается диспетчеру, ответственному за режим работы линии. Информация о температуре провода может передаваться по радиоканалу. Такие разработки уже применяются за рубежом. В нашей стране также проводятся испытания датчика температуры провода с автономным источником питания. Это наиболее точный способ определения температуры провода, однако в настоящий момент не представляется возможным оборудовать все линии такими датчиками, тем более необходимо знать температуру провода во многих точках ВЛ.

При отсутствии датчиков, температуру провода можно рассчитать при известных условиях охлаждения провода (температура воздуха, скорость и направление ветра). Разработана методика расчета установившейся температуры провода путем численного решения нелинейного уравнения теплового баланса без введения дополнительных упрощений.

Уравнение теплового баланса для установившегося теплового режима записывается следующим образом:

 (1.1)

 

где I - ток линии, А; R20 - сопротивление провода при температуре 20 °С, Ом/м; В. - температурный коэффициент сопротивления провода, 1/К; т) - температура провода, °С; Фв - температура воздуха, °С; ак, ал - коэффициент теплоотдачи провода при конвективном и лучистом теплообмене, Вт/(м2-К); М1С - теплота солнечного излучения, поглощаемая 1 метром провода в единицу времени, Вт; А - диаметр провода, м.

Постоянная лучеиспускания зависит от материала, из которого изготовлен провод, и состояния поверхности провода. По разным данным, она может изменяться от 0,11 для чистого алюминия до 0,8 для окисленного и загрязненного алюминия, при этом измерить этот параметр в условиях эксплуатации затруднительно. Соответственно коэффициент теплоотдачи лучеиспусканием может изменяться в пределах 0,94-6,83 Вт/(м2-К) (при температуре провода 70 °С и температуре воздуха 25 °С). На практике обычно принимают е = 0,6, при тех же условиях глл = 5,12 Вт/(м2-К).

Коэффициент теплоотдачи конвекцией в общем виде определяется исходя из критериальных уравнений конвективного теплообмена:


Nu= (Rе,Рг),(1.2)


где Nu - критерий Нуссельта, определяющий коэффициент теплоотдачи; Ке - критерий Рей-нольдса, определяющий влияние скорости охлаждающей среды на конвективный теплообмен; Рг - критерий Прандтля, определяющий свойства охлаждающей среды, для воздуха этот критерий можно считать постоянным в диапазоне температур от -50 °С до +40 °С.

При различных значениях критерия Рейнольдса функция (1.2) может иметь различный вид. При некотором критическом значении (обычно Ке = 5) считается, что конвекция перестает быть вынужденной и становится свободной, при этом вместо критерия Рейнольдса используется критерий Грасгофа (Сг), характеризующий протекание свободной конвекции. Однако в реальных условиях всегда есть некоторое движение воздуха. Согласно отечественным исследованиям при антициклоническом характере погоды минимальную скорость ветра V можно принять равной 0,6 м/с, при циклоническом характере погоды - 2 м/с. По материалам СИГРЕ, опубликованным на последней сессии, проходившей в Париже в 2006 г., рекомендуется принимать минимальную скорость ветра, равной 0,6 м/с.

Большинство авторов сходятся на том, что при малых скоростях ветра (у < 5 м/с, Ке < 1000) витая структура провода практически не влияет на теплоотдачу, и провод можно рассматривать как гладкий цилиндр в воздушном потоке, при этом коэффициент теплоотдачи конвекцией приближенно рассчитывается по выражению:


ак = 3,5к ,(1.3)


где  - коэффициент зависимости теплоотдачи при конвективном теплообмене от угла атаки ветра \|/в, значения которого приведены ниже:


\|/в,°>807060 50 4030<20

10,98о,940,880,780,670,55


При V > 5 м/с степень зависимости коэффициента теплоотдачи от скорости ветра увеличивается и максимальная температура провода получается несколько завы-енной, что однако дает некоторый запас при расчете нагрузочной способности.

Коэффициент теплоотдачи конвекцией является наиболее неопределенным параметром уравнения (1.1), тем не менее существенно влияющим на допустимую нагрузку. Поэтому необходимо проведение измерений на действующих ВЛ, которые позволили бы уточнить значения коэффициентов теплоотдачи при различных условиях.

Для определения теплоты солнечного излучения, поглощаемого проводом, существует несколько моделей.

Согласно данным В.В. Бургсдорфа, влияние солнечной радиации максимально сказывается для ненагруженных проводов (температура может повыситься на 10-12 °С). При токовой нагрузке примерно 2 А/мм2 дополнительный нагрев от солнечной радиации не превышает 3-5 °С.

Приведенные выражения позволяют рассчитывать температуру провода при известных токовой нагрузке и погодных условиях, а также допустимую токовую нагрузку при заданной допустимой температуре провода.

Вторая задача - определение допустимой температуры провода. Необходимо различать максимально допустимую температуру провода по условиям сохранения механической прочности проводов и допустимую температуру по условию соблюдения допустимых габаритов в местах пересечения воздушных линий с автомобильными и железными дорогами, различными препятствиями и другими ВЛ. Допустимые габариты определяются ПУЭ-7, гл. 2.5.

Важно правильно установить максимально допустимую температуру провода, так как это определяет резерв повышения пропускной способности линий электропередачи. Например, увеличение допустимой температуры провода с 70 °С до 75 °С для ВЛ 220 кВ с проводом АС-300 позволило бы дополнительно пропускать по линии до 16 МВ-А мощности. При увеличении допустимой температуры до 90 °С дополнительная мощность составляет примерно 60 МВ-А; при 100 °С - 85 МВ-А.

В настоящее время длительно допустимая температура провода принята равной 70 °С, а в аварийном режиме допустимая токовая нагрузка может быть увеличена на 20 %, однако при этом делается оговорка, что необходимо знать текущее состояние линии. Но так как выполнить диагностику ВЛ практически сложно, то нет возможности применения на практике повышения допустимой нагрузки в аварийном режиме.

Исследования, проведенные еще 50 лет назад, показали, что температура 70 °С, особенно для сталеалюминиевых проводов, является заниженной. Заметное снижение прочности и модуля упругости алюминиевых и сталеалюминиевых проводов начинается с температуры примерно 150 °С. Поэтому для сталеалюминиевых проводов более оправданной является максимально допустимая температура 100 °С, а для алюминиевых и медных -90 °С. На сессии СИГРЕ также рекомендовано принимать максимальную температуру сталеалюминиевого провода равной 100 °С.

Зажимы при их удовлетворительном состоянии имеют температуру существенно ниже температуры провода, если же наблюдается повышенный нагрев соединения, его надо немедленно заменять. Особенно это касается гололедных районов и линий, на которых организована плавка гололеда. Иначе может произойти отгорание провода в зажиме при токах плавки гололеда, плавка не состоится и линия может быть разрушена. Диагностика слабых мест на ВЛ может производиться с помощью тепловизора. Наиболее эффективно выполнять диагностику при проведении пробной плавки гололеда на ВЛ перед гололедным периодом. Это мероприятие важно не только для зимнего периода, но и для обеспечения нормальной работы ВЛ в период максимальной температуры воздуха.

Для расчета допустимой температуры провода, исходя из условия нарушения допустимых габаритов, разработан алгоритм, позволяющий рассчитывать стрелы провеса и напряжение в проводе при различных погодных условиях, в том числе для линий, проходящих в горной местности с разной высотой подвеса провода. По ГОСТ 839-80 определяется нагрузка от собственного веса провода Рр кг. Механическое напряжение в проводе при заданных условиях определяется для анкерного пролета с разными длинами пролетов в пересеченной местности, исходя из уравнения состояния провода по уравнению:


 (1.4)


где  - площадь поперечного сечения провода, мм2; а - механическое напряжение в проводе, кг/мм2; о , Р , Ф - расчетные параметры; "б- - измеренная или заранее рассчитанная температура провода, °С; о^ - коэффициент температурного расширения, 1/К; / - приведенная длина анкерного пролета, м; Р - приведенный коэффициент упругого удлинения провода.

Для определения расчетных параметров должны использоваться паспортные данные линии. Если есть опасение, что в проводе произошла остаточная деформация в результате действия нагрузок, выше нормативных, или старения, необходимо или менять провод, или пересматривать допустимую нагрузку на него с учетом замеров реальных стрел провеса.

Зная стрелу провеса и высоту подвеса провода, можно определить габарит и допустимость работы ВЛ в заданном режиме.

Необходимо обратить внимание, что расчеты производятся для провода с токовой нагрузкой. В уравнение (4) в отличие от существующих методик расчета механического напряжения в проводе и допустимой температуры подставляется предварительно рассчитанная или измеренная температура провода, а не температура воздуха.

Описанный алгоритм позволяет рассчитывать габарит, стрелу провеса, механическое напряжение в проводе при заданной токовой нагрузке и различных погодных условиях, в том числе при гололедно-ветровых нагрузках. Используя уравнения (1.1) и (1.4), численными методами можно решить и обратную задачу расчета температуры и токовой нагрузки при условии сохранения допустимого габарита.

Третья задача - управление энергосистемой с целью недопущения перегруза линий.

По мнению авторов, чтобы более четко регламентировать действия линейного и оперативного персонала при возникновении опасности перегруза линий, необходимо различать следующие режимы: нормальный, утяжеленный и аварийный по токовой перегрузке.

Нормальным режимом в данном случае является режим, при котором температура провода не превышает длительно допустимой температуры 70 °С и допустимой температуры по условию сохранения габаритов.

Утяжеленным режимом является режим, при котором температура провода выше 70 °С, но ниже максимально допустимой температуры 100 °С (90 °С) по условиям механической прочности и допустимой температуры по условию сохранения габаритов. В этом режиме токовые нагрузки превышают экономическую плотность тока, поэтому он характеризуется пониженным уровнем напряжений и увеличенными потерями. Хотя режим может быть довольно длительным, персонал должен предпринимать действия по разгрузке линии, по возможности используя режимные мероприятия, не связанные с ограничением нагрузки потребителей, и, если это необходимо, вводить режим ограничения.

Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.