Меню
Поиск



рефераты скачать Ответы на экзаменационные вопросы по физике




19. Явление электромагнитной индукции. Примеры проявления электромагнитной индукции и ее использование в технических устройствах

Если электрический ток создает магнитное по­ле, то нельзя ли с помощью магнитного поля полу­чить электрический ток? - такую задачу поставил английский физик Фарадей, узнав об открытии Эрстеда. Многочисленные опыты и раздумья привели Фарадея к успеху. Если к катушке с большим чис­лом витков подключить гальванометр, то, перемещая вдоль катушки постоянный магнит (рис. 1), можно наблюдать отклонение стрелки прибора, т. е. возник­новение индукционного электрического тока. При остановке магнита ток прекращается, при движении магнита в обратную сторону меняется направление тока. Многочисленные опыты подтверждают, что при любом изменении магнитного поля, пронизывающего катушки, в ней возникает индукционный ток. Это явление назвали электромагнитной индукцией. Она возникает при перемещении магнита (электромагни­та) относительно катушки или катушки относитель­но магнита; при замыкании - размыкании цепи или изменении тока во второй катушке, если она нахо­дится на одном железном сердечнике с первой ка­тушкой. Явление электромагнитной индукции лежит в основе действия индукционных генераторов (постоянного и переменного тока), трансформаторов, микро­фонов и громкоговорителей. Электродинамический микрофон (рис. 2) состоит из ГП - образного постоянного магнита 3, в промежутке между полюсами магнита находится ка­тушка 1, каркас которой соединен с мебраной 2. Под действием звуков мембрана будет колебаться и в катушке возникает индукционный ток, который усили­вается с помощью усилителя низкой частоты и воспроизводится громкоговорителем. Таким образом, микрофон преобразует механическую энергию звуко­вых колебаний в электрическую энергию индукци­онного тока.




20. Закон Ома для участка цепи. Последовательное и параллельное соедин-е проводников

Напряжение, сила тока и сопротивление - физические величины, характеризующие явления, происходящие в электрических цепях. Эти величины связаны между собой. Эту связь впервые изучил немецкий физик 0м. Закон Ома звучит так: Сила тока на участке цепи прямо пропорци­о­наль­­­на напряжению на этом участке (при заданном сопротивлении) и обратно про­пор­ци­ональ­на сопротивлению участка (при заданном напряжении): I = U / R, из формулы следует, что U = I×R и R = U / I. Так как сопротивление данного проводника не зависит ни от напряжения, ни от си­лы тока, то последнюю формулу надо читать так: со­противление данного проводника равно отношению напряжения на его концах к силе протекающего по нему тока. В электрических цепях ча­ще всего проводники (потребители электрической энергии) соединяются последовательно (на­при­мер, лампочки в елочных гирляндах) и параллельно (например, домашние электроприборы). При последовательном соединении (рис. 1) сила тока в обоих проводниках (лампочках) оди­накова: I = I1 = I2, напряжение на концах рассмат­риваемого участка цепи складывается из напряже­ния на пер­вой и второй лампочках: U = U1 + U2. Общее сопротивление участка равно сумме сопротив­лений лампочек R = R1 + R2. При параллельном соединении (рис. 2) резис­торов напряжение на участке цепи и на концах ре­зисторов одинаково: U = U1 = U2. сила тока в нераз­ветвленной части цепи равна сумме сил токов в от­дельных резисторах: I = I1 + I2. Общее сопротивле­ние участка меньше сопротивления каждого резистора. Если сопротивления резисторов одинаковы (R1 = R2) то общее сопротивле­ние участка Если в цепь включено параллельно три и более резисторов, то общее сопротивление может быть найдено по формуле: 1/R = 1/R1 + 1/R2 + ... + 1/RN. Параллельно соединяются сетевые потребите­ли, которые рассчитаны на напряжение, равное на­пряжению сети.




21. Законы отражения и преломления света. Показатель преломления. Практическое использование этих законов

При падении света на границу раздела двух сред часть света отражается в первую среду, а часть проходит во вторую среду, если она прозрачна, изме­няя при этом направление своего распространения, т. е. преломляется. Закон отражения. Угол падения равен углу отражения (a = b ). Падающий луч AO, отраженный луч OB и перпендикуляр OC, восставленный в точке падения, лежат в одной плоскости (рис. 1). Законы преломления. Луч падающий AO и преломленный OB лежат в одной плоскости с пер­пендикуляром CD, проведенным в точке падения лу­ча к плоскости раздела двух сред (рис. 2). Отноше­ние синусов угла падения а и угла преломления р постоянно для данных двух сред и называется пока­зателем преломления второй среды по отношению к  первой: . Законы отражения света учитываются при построении изоб­ра­же­ния предмета в зеркалах (плоском, вогнутом и выпуклом) и проявляются в зер­кальном отражении в перископах, в прожекторах, автомобильных фарах и во многих других технических устройствах. Законы преломления света учитываются при построении изображения во всевозможных линзах, призмах и их совокупности (микроскоп, телескоп), а также в оптических приборах (бинокли, спектральные аппараты, фотоаппараты и проекционные аппараты).




22. Линзы. Фокус линзы. Построение изображений в собирающей линзе. Использование линз в оптических приборах

Прозрачные тела, ограниченные двумя сфери­ческими поверхностями, называются линзами. Выпуклые линзы, у которых середина толще, чем края, являются собирающими (рис. 1а), а вогнутые линзы, у которых середина тоньше, чем края, являются рассеивающими (рис. 1б). Прямая, проходящая через центры C1 и C2 сферических поверхностей, ограничивающих линзу, называется главной оптической осью линзы (рис. 2). Если направить на линзу пучок лучей, параллельных оптической оси, то после двойного преломления они собираются в одной точке, называемой фокусом линзы F (рис. 3а). OF - фокусное расстояние линзы. Фокус рассеи­вающей линзы мнимый (рис. 3б). Линзы, толщина которых пренебрежимо мала по сравнению с радиусами кривизны поверхностей, называют тонкими. Для построения изображений в собирающей тонкой линзе, фокусы и оптический центр которых заданы, будем пользоваться лучами, ход которых заранее известен. Построим изображение предмета АВ (рис. 4). Для этого направим луч AC параллельно главной оптической оси. После преломления он пройдет через фокус линзы. Другой луч AO проходит через оптический центр не преломляясь. В точке пе­ресечения этих лучей будет находиться изображение A1 точки A. Не следует думать, что изображение создается двумя или тремя лучами, оно создается бес­конечным множеством лучей, вышедших из точки А и собравшихся в точке А1. Такое же построение можно сделать для всех точек предмета, которые на­ходятся между точками A и B. Изображение этих промежуточных точек будет лежать между точками A1 и B1, т. е. A1B1 - изображение предмета AB. От положения предмета по отношению к линзе зависит его изображение. Если предмет находится на расстоянии F<d <2×F, то изображение действительное, увеличенное, обратное; если 2F<d, то изобра­жение действительное,  уменьшенное,  обратное; d<F, то изображение мнимое, прямое, увеличенное, где d - расстояние от предмета до линзы. Например, для фотоаппарата d>2×F. Линзы являются главными частями оптиче­ских приборов, глаза, лупы, фотоаппарата, микро­скопа и т. д.




23. Электрическое и магнитное поля. Источники этих полей и индикаторы для их обнаружения. Примеры проявления этих полей

Пространство, окружающее наэлектризованное тело, отличается от пространства, находящегося во­круг ненаэлектризованных тел. Иначе говоря, с каж­дым зарядом обязательно связано электрическое по­ле, которое непосредственно действует с некоторой силой на все остальные заряды. Электрическое поле материально. Оно может быть обнаружено по его воздействию на заряженные тела. Это подтверждает­ся следующим (одним из многочисленных) опытом. Если заряженной палочкой прикоснуться к подве­шенной на нити гильзе (из металлической фольги), то она оттолкнется. Чем ближе гильза к палочке, тем с большей силой действует на нее электрическое поле палочки. Следовательно, вблизи заряженных тел действие поля сильнее, а при удалении от них поле ослабевает. Электрическое поле исследуют с по­мощью пробного заряда, находящегося на шарике малых размеров. Магнитное поле проявляется около постоян­ных магнитов и проводников, по которым идет элек­трический ток. Широко распространенным индика­тором магнитного поля является магнитная стрелка (компас). С помощью этого индикатора можно обна­ружить, что разноименные магнитные полюса притя­гиваются, а одноименные - отталкиваются. Это вза­имодействие описывается по схеме: магнит - по­ле - магнит. Иначе говоря, вокруг магнита су­ществует магнитное поле, которое действует на дру­гие магниты, в частности на магнитные стрелки или намагничивающиеся частицы железа. Как и элек­трическое поле, магнитное поле материально. Электрические и магнитные поля играют ис­ключительно важную роль в природе и технике. Электрические поля проявляют себя в атмосферном электричестве (интенсивно во время грозы), магнит­ные - во многих космических явлениях. В технике электрические поля используются при покраске из­делий и в фильтрах, магнитные - в электромагни­тах, электрических генераторах и двигателях.


 


1. Механич. движение, его хар-ки. Относительность скорости, перемещения, траектории механич. движения

2. Виды механич. движения - прямолинейное равномерное, прямолинейное равноускоренное, равномерное движение по окружности

3. Законы Ньютона. Примеры проявления з-нов Ньютона в природе и использование этих з-нов в технике

4. Взаимодействие тел: силы тяжести, упругости, трения. Примеры проявления этих сил в природе и технике

5. Импульс тела. Закон сохран. импульса. Примеры проявления з-на сохран. импульса в природе и использования этого закона в технике

6. Механическая работа и мощность. Простые механизмы. КПД простых механизмов

7. Механич. колебания (на примере математического или пружинного маятников). Ха­р-ки колебательных движений: амплитуда, период, частота. Соотношение между периодом и частотой. График колебания

8. Механич. волны. Длина волны, скорость распространения волны и соотношения между ними. Звуковые волны. Эхо

9. Потенциальная и кинетическая энергия. Примеры перехода энергии из одного вида в другой. Закон сохранения энергии

10. Представления о дискретном состоянии вещества. Газообразное, жидкое и твердое состояния в-ва. Опытное обоснование хар-ра движения и взаимодействия частиц, из которых состоят в-ва в различных агрегатных состояниях

11. Передача давления газами, жидкостями и твердыми телами. Закон Паскаля и его применение в гидравлических машинах

12. Атмосферное давление. Приборы для измерения атмосферного давления. Воздушная оболочка Земли и ее роль в жизнедеятельности человека

13. Действие жидкостей и газов на погруженное в них тело. Архимедова сила, причины ее возникновения. Условия плавания тел

14. Внутренняя энергия тел и способы ее изменения. Виды теплопередачи, их учет и использование в быту

15. Плавление кристаллических тел и объяснение этого процесса на основе представлений о строении вещества. Удельная теплота плавления

16. Испарение и конденсация. Объяснение этих процессов на основе представлений о строении вещества. Кипение. Удельная теплота парообразования

17. Принцип действия тепловой машины. Коэффициент полезного действия тепловых машин. Примеры тепловых двигателей. Влияние тепловых машин на окружающую среду и способы уменьшения их вредного воздействия

18. Электризация тел. Два рода электрических зарядов. Электрический ток в металлах и условия его существования. Виды источников тока

19. Явление электромагнитной индукции. Примеры проявления электромагнитной индук-ции и ее использование в технических устройствах

20. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников

21. Законы отражения и преломления света. Показатель прелом. Практическое использование этих зак-ов

22. Линзы. Фокус Л. Построение изображений в собирающей Л. Использование Л. в оптических приборах

23. Электрич. и магнитн. поля. Источники этих полей и индикаторы для их обнаружения. Примеры проявления этих полей



1. Расчет давления твердого тела

Масса человека 90 кг, площадь подошв его ног равна 60 см2. Какое давление человек производит на пол? Как изменится значение давления, если человек будет стоять на одной ноге.

Дано: m=90 кг; S=60 см2; p - ? СИ: m=90 кг; S=60×10-4 м2=6×10-3 м2. Решение: p=F/S; F=m×g; ; p==15×104 Н/м2=15×104 Па=150 кПа.

Если человек будет стоять на одной ноге, то площадь опоры уменьшится в два раза. Значит, давление увеличится в два раза и станет равным 300 кПа.

2. Расчет силы атмосферного давления на плоскость

Определите, с какой силой атмосферный воздух давит на поверхность стола размерами 120x50 см2. Нормальное атмосферное давление 760 мм рт. ст.

Дано: p=760 мм рт. ст.;S=120x50 см2;F - ? СИ: p=760×133 Па = 101300 Па; S=6000×10-4 м2=0,6 м2. Решение: p=F/S; F=p×S; p== 6078 Н»6 кН

3. Расчет давления внутри жидкости

Подводная лодка находится в море на глубине 300 м. Определите давление воды на нее.

Дано: h=300 м; r=1030 кг/м; p - ? Решение: p=r×g×h; p=»309×104 Н/м2=3,09×106 Па.

4. Расчет количества теплоты, которое потребуется для плавления твердого тела при температуре плавления

Какое количество теплоты необходимо, чтобы расплавить ледяную глыбу массой 12,5 т при температуре плавления? Удельная теплота плавления льда 332 кДж/кг.

Дано:m=12,5 т; l=332 кДж/кг; Q - ? СИ: m=12500 кг; l=332000 Дж/кг. Решение: Q=l×m; Q=12500 кг×332000 Дж/кг = 415×107 Дж = 4,15×106 кДж.

5. Расчет количества теплоты, которое требуется для нагревания жидкости до температуры кипения

Какое количество теплоты потребуется для нагревания 10 л воды от 200 до кипения.

Дано: V=10 л=10-2 м3; t1=20 0C; t2=100 0C; c=4,2×10 Дж/(кг×0C); r=103 кг/м3; Q - ? СИ:;. Решение: Q = m×c×( t1 - t2); m = r× V; Q = r×V×c×( t1 - t2); Q = = 4,2×80×104 Дж = 3,36×106 Дж = 3,36×103 кДж.

6. Применение закона Ома для участка цепи

По показаниям приборов (см. рис.) определите сопротивление проводника AB и начертите схему электрической цепи. Дано: U = 2 В; I = 0,5 А; R - ? Решение: I = U / R; R = U / I; R == 4 Ом.

7. Применение формул механической работы и мощности для случая движения автомобиля с постоянной скоростью

Сила тяги мотор автомашины равна 2×103 Н. Автомашина движется равномерно со скоростью 72 км/ч. Какова мощность мотора автомобиля и работа, совершенная им за 10 с?

Дано: F=2×103 Н; v=72 км/ч; t=10 с; A - ? N - ? Решение: A = F×s; s = v×t; A = F×v×t; A = 2×103 Н×10 с×20 м/c = 4×105 Дж = 4×102 кДж; N = A / t = = F×v; N = 2×103 Н×20 м/c = 4×104 Вт = 40 кВт.

9. Применение второго закона Ньютона в случае, когда тело движется прямолинейно под действием одной силы

На покоящееся тело массой 0,2 кг действует в течение 5 с сила 0,1 Н. Какую скорость приобретет тело и какой путь пройдет оно за указанное время?

Дано: m = 0,2 кг; t = 5 с; F = 0,1 Н; v - ? s - ? Решение: F = m×a; a = F / m; v = a × t= ;  s =  = ; v ==2,5 м/с; s ==6,25 м.

10. Применение закона сохранения импульса при неупругом столкновении тел

Вагон массой 20 т, движущийся со скоростью 0,3 м/с, нагоняет ваг. массой 30 т, движущийся со скоростью 0,2 м/с. Какова скорость вагонов после взаимодействия, если удар неупругий?

Дано: m1=20 т; v1=0,3 м/с; m2=30 т; v2=0,2 м/с; v - ? СИ: m1 = 2×104 кг; v1=0,3 м/с; m2 = 3×104 кг; v2=0,2 м/с. Решение: m1×v1 + m2×v2 = (m1 + m2v; v = ; v =  =  =  = 0,24 м/с

11. Применение закона сохран-я механич. энергии при свободном падении тел

Тело массой 1 кг падает с высоты 20 м над землей. Вычислить кинетическую энергию тела в момент, когда оно находится на высоте 10 м над землей, и в момент падения на землю.

Дано: m=1 кг; h=20 м; h1=10 м; EК1 - ? EК2 - ? СИ:;. Решение: В высшей точке = m×g×h; EK = 0; В средней точке 1 = m×g×h1; EK1 = EП - EП1; EП1 = = 100 Дж; EK1 = 200 Дж - 100 Дж = 100 Дж; В низшей точке 2 = 0; EK2 = EП = 200 Дж.



12. Расчет удельного сопротивления проводника

Спираль электрической плитки изготовлена из нихромовой проволоки длиной 13,75 м и площадью поперечного сечения 0,1 мм2. Чему равно сопротивление спирали?

Дано: l=13,75 м; S=0,1 мм2; r=1,1 Ом×мм2/м; R - ? Решение: ; R = = 151,25 Ом.

13. Расчет мощности и работы электрического тока

Электрический утюг рассчитан на напряжение 220 В. Сопротивление его нагревательного элемента равно 88 Ом. Определите энергию, потребляемую утюгом за 30 мин, и его мощность.

Дано: U=220 В; R=88 Ом; t = 30 мин; A - ? P - ? СИ:;. Решение: A = I×U×t; I = U / R; ; P = A / t = I × U; t = 30 мин = 0,5 ч; A = = 2,5 А × 220 В × 0,5 ч = 275 Вт×ч = 0,275 кВт×ч; P = 2,5 А × 220 В = 550 Вт.



14. Расчет количества теплоты, выделяемой электрическим нагреватлем

По проводнику сопротивлением 4 Ом в течение 2 мин прошло 500 Кл электричества. Сколько теплоты выделит проводник?

Дано:R = 1,2 Ом; t = 2 мин; q = 500 Кл; Q - ? СИ: R = 1,2 Ом; t = 120 сек; q = 500 Кл; Решение: Q = I2×R×t; I = q / t; Q =  = ; Q =  » 25×102 Дж = 2,5 кДж.

15. Определение основн. парам-ров гармонического колеб. движ. по его графику

По графику, приведенному на рисунке, определите амплитуду, период, частоту. Какие из величин, характеризующих гармонические колебания (амплитуда, период, частота, смещение, скорость, ускорение), являются постоянными и какие - переменными?



1. Расчет давления твердого тела

2. Расчет силы атмосферного давления на плоскость

3. Расчет давления внутри жидкости

4. Расчет кол-ва теплоты, требуемого для плавл. тв. тела при темп-ре плав-я

5. Расчет кол-ва теплоты, требуемого для нагревания жидкости до темп-ры кипения

6. Применение закона Ома для участка цепи

7. Применение формул механич. работы и мощ-ти для случая движ-я автомобиля с постоянной скоростью

8. Чтение и интерполяция графиков зависимости кинематических величин (перемещ-я и скор-ти) от времени

9. Применение второго з-на Ньютона в случае, когда тело движ. прямолинейно под действием одной силы

10. Применение закона сохранения импульса при неупругом столкновении тел

11. Применение закона сохранения механической энергии при свободном падении тел

12. Расчет удельного сопротивления проводника

13. Расчет мощности и работы электрического тока

14. Расчет количества теплоты, выделяемой электрическим нагреватлем

15. Определение основных параметров гармонического колеб. движения по его графику

8. Чтение и интерполяция графиков зависимости кинематических величин (перемещения и скорости) от времени

По графику перемещения равномерно движущегося тела (см. рис.) определите: а) перемещение тела за 5 ч; б) скорость тела.



Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.