Меню
Поиск



рефераты скачать Оптика и оптические явления в природе

Явления, связанные с отражением света

 

Предмет и его отражение

То, что отраженный в стоячей воде пейзаж не отличается от реального, а только перевернут “вверх ногами” далеко не так.

Если человек посмотрит поздним вечером, как отражаются в воде светильники или как отражается берег, спускающийся к воде, то отражение покажется ему укороченным и совсем “исчезнет”, если наблюдатель находится высоко над поверхностью воды. Также никогда нельзя увидеть отражение верхушки камня, часть которого погружена в воду.

Пейзаж видится наблюдателю таким, как если бы на него смотрели из точки, находящейся на столько глубже поверхности воды, насколько глаз наблюдателя находится выше поверхности. Разница между пейзажем и его изображением уменьшается по мере приближения глаза к поверхности воды, а так же по мере удаления объекта.

Часто людям кажется, что отражение в пруду кустов и деревьев отличается большей яркостью красок и насыщенностью тонов. Эту особенность также можно заметить, наблюдая отражение предметов в зеркале. Здесь большую роль играет психологическое восприятие, чем физическая сторона явления. Рама зеркала, берега пруда ограничивают небольшой участок пейзажа, ограждая боковое зрение человека от избыточного рассеянного света, поступающего со всего небосвода и ослепляющего наблюдателя, то есть он смотрит на небольшой участок пейзажа как бы через темную узкую трубу. Уменьшение яркости отраженного света по сравнению с прямым облегчает людям наблюдение неба, облаков и других яркоосвещенных предметов, которые при прямом наблюдении оказывается слишком ярким для глаза. Отражают свет любые поверхности, не только гладкие. Именно благодаря этому мы видим все тела. Поверхности, которые отражают большую часть светового потока, выглядят светлыми или белыми. Поверхности, которые поглощают большую часть света, выглядят тёмными или черными. Если пучок параллельных световых лучей падает на шершавую поверхность (даже если шероховатости микроскопически малы, как на поверхности листка бумаги) (рисунок справа) свет отражается в различных направлениях, то есть отраженные лучи не будут параллельными, поскольку углы падения лучей на неровности поверхности разные. Такое отражение света называют рассеянным, или диффузным. Закон отражения выполняется и в этом случае, но на каждом маленьком участке поверхности. Из-за диффузного отражения во всех направлениях обычный предмет можно наблюдать под разными углами. Стоит сдвинуть голову в сторону, как из каждой точки предмета в глаз будет попадать другой пучок отраженных лучей. Но если узкий пучок света падает на зеркало, то вы увидите его только в том случае, если глаз занимает положение, для которого выполняется отражения. Этим и объясняются необычные свойства зеркал. (Используя аналогичные аргументы, Галилей показал, что поверхность Луны должна быть шероховатой, а не зеркально гладкой, как полагали некоторые.)

Все несветящиеся тела, освещаемые каким-нибудь источником, становятся видимыми только благодаря рассеиваемому ими свету. Хорошо отшлифованную поверхность стекла, поверхность спокойной воды трудно увидеть потому, что такие поверхности рассеивают очень мало света. Мы видим в них чёткие изображения окружающих освещенных предметов. Однако стоит только поверхности зеркала покрыться пылью, а поверхности воды зарябить, как они становятся хорошо видимыми.

Зависимость коэффициента отражения от угла

Известно, что в солнечный день при помощи зеркала можно получить световой «зайчик» на стене, на полу или потолке.

Объясняется это тем, что пучок света, падая на зеркало, отражается от него, то есть изменяет направление. Световой «зайчик» — это след отражённого пучка света на каком-либо экране. Опыт показывает, что свет всегда отражается от границы, разделяющей две среды разной оптической плотности.

Поверхностью зеркала разделяются две среды разной оптической плотности. Если поверхность зеркала представляет собой часть плоскости, то зеркало называется плоским.

На поверхность раздела двух сред MN из точки S падает луч света, направление которого задано лучом SO. Направление отражённого луча показано лучом OB. SO — падающий луч, ОВ — отражённый. Из точки падения луча О проведён перпендикуляр ОС к поверхности MN. Угол SOC, образованный падающим лучом SO и перпендикуляром ОС, называется углом падения. Угол СОВ, образованный тем же перпендикуляром ОС и отражённым лучом, называется углом отражения.

При изменении угла падения луча будет меняться и угол отражения. Это явление удобно наблюдать на специальном приборе. Прибор представляет собой диск на подставке. На диске нанесена круговая шкала с ценой деления 10° и проведены два перпендикулярных друг к другу диаметра: 0—0 и 90—90. По краю диска можно передвигать осветитель, дающий узкий пучок света. Установим плоское зеркало на диске так, как показано на рисунке. Если пучок света падает на зеркало под углом 40°, то под таким же углом он и отражается от зеркала. Передвигая осветитель по краю диска, будем менять угол падения луча и каждый раз отмечать соответствующий ему угол отражения. Мы обнаружим, что во всех случаях угол отражения равен углу падения луча. При этом лучи отражённый и падающий лежат в одной плоскости с перпендикуляром, проведённым к зеркалу в точке падения луча.

Таким образом, отражение света происходит по следующим законам:

1. Луч падения, луч отражения и перпендикуляр к границе раздела двух сред, поставленный в точку падения луча, лежат в одной плоскости.

2. Угол падения равен углу отражения.

3. Если луч падает на зеркало в направлении ВО (рис. первый на странице), то отражённый луч пойдёт в направлении OS. Следовательно, падающий и отражённый лучи могут меняться местами, т.е. обратимы.

Эти законы были известны ещё древним грекам, и вы можете проверить их сами, посветив в затемнённой комнате лучом света от фонарика или карманным лазером на зеркало. И самостоятельно подтвердить законы отражения света установленные экспериментально другими. К примеру, направим узкий пучок света на плоскую поверхность зеркала. Пусть зеркало – граница раздела двух сред, SO – падающий луч; ОM – перпендикуляр, проведенный в точку падения луча, OS1 – отраженный луч. Угол между падающим лучом и перпендикуляром, проведенным к точке падения, называется углом падения луча, а угол между отраженным лучом и этим перпендикуляром называется углом отражения, а затем поменяем местами падающий об отраженный лучи.

Защитные стёкла

Обычные оконные стекла частично пропускают тепловые лучи. Это хорошо для использования их в северных районах, а также для парников. На юге же помещения настолько перегреваются, что работать в них тяжело.

Защита от Солнца сводится либо к затемнению здания деревьями, либо к выбору благоприятной ориентации здания при перестройке. И то и другое иногда бывает затруднительным и не всегда выполнимым.

Для того чтобы стекло не пропускало тепловые лучи, его покрывают тонкими прозрачными пленками окислов металлов. Так, оловянно-сурьмяная пленка не пропускает более половины тепловых лучей, а покрытия содержащие окись железа, полностью отражают ультрафиолетовые лучи и 35-55% тепловых.

Растворы пленкообразующих солей наносят из пульверизатора на горячую поверхность стекла во время его тепловой обработки или формования. При высокой температуре соли переходят в окиси, крепко связанные с поверхностью стекла.

Подобным образом изготовляют стекла для светозащитных очков.

Полное отражение света

При падении света на границу двух сред световой луч, как об этом уже упоминалось, частично преломляется, а частично отражается от нее. При a>a0преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света.

Для наблюдения полного отражения можно использовать стеклянный полуцилиндр с матовой задней поверхностью. Полуцилиндр закрепляют на диске так, чтобы середина плоской поверхности полуцилиндра совпадала с центром диска (рис. 12). Узкий пучок света от осветителя направляют снизу на боковую поверхность полуцилиндра перпендикулярно его поверхности. На этой поверхности луч не преломляется. На плоской поверхности луч частично преломляется и частично отражается. Отражение происходит в соответствии с законом отражения, a преломление – в соответствии с законом преломления (1.4).

Если увеличивать угол падения, то можно заметить, что яркость (и следовательно, энергия) отраженного пучка растет, в то время как яркость (энергия) преломленного пучка падает. Особенно быстро убывает энергия преломленного пучка, когда угол преломления приближается к 90°. Наконец, когда угол падения становится таким, что преломленный пучок идет вдоль границы раздела (см.рис. 11), доля отраженной энергии составляет почти 100%. Повернем осветитель, сделав угол паденияa большим a0. Мы увидим, что преломленный пучок исчез и весь свет отражается от границы раздела, т. е. происходит полное отражение света.

На рисунке 13 изображен пучок лучей от источника, помещенного в воде недалеко от ее поверхности. Большая интенсивность света показана большей толщиной линии, изображающей соответствующий луч.

Угол паденияa0, соответствующий углу преломления 90°, называют предельным углом полного отражения. При sinb=1 формула (1.8) принимает вид


 (1.9)


Из этого равенства и может быть найдено значение предельного угла полного отражения a0. Для воды (n=1,33) он оказывается равным 48°35', для стекла (n=1,5) он принимает значение 41°51', а для алмаза (n=2,42) этот угол составляет 24°40'. Во всех случаях второй средой является воздух.

Явление полного отражения легко наблюдать на простом опыте. Нальем в стакан водуи поднимем его несколько выше уровня глаз. Поверхность воды при рассматривании ее снизу сквозь стенку кажется блестящей, словно посеребренной вследствие полного отражения света.

Полное отражение используют в так называемой волоконной оптике для передачи света и изображения по пучкам прозрачных гибких волокон – световодов. Световод представляет собой стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления. За счет многократного полного отражения свет может быть направлен по любому (прямому или изогнутому) пути (рис. 14).

Волокна набираются в жгуты. При этом по каждому из волокон передается какой-нибудь элемент изображения (рис. 15). Жгуты из волокон используются, например, в медицине для исследования внутренних органов.

По мере улучшения технологии изготовления длинных пучков волокон – световодов все шире начинает применяться связь (в том числе и телевизионная) с помощью световых лучей.

Полное отражение света показывает, какие богатые возможности для объяснения явлений распространения света заключены в законе преломления. Вначале полное отражение представляло собой лишь любопытное явление. Сейчас оно постепенно приводит к революции в способах передачи информации.

Алмазы и самоцветы

В Кремле существует выставка алмазного фонда России.

В зале свет слегка приглушен. В витринах сверкают творения ювелиров. Здесь можно увидеть такие алмазы, как «Орлов», «Шах», «Мария», «Валентина Терешкова».

Секрет прелестной игры света в алмазах, заключается в том, что этот камень имеет высокий показатель преломления (n=2,4173) и вследствие этого малый угол полного внутреннего отражения (α=24˚30′) и обладает большей дисперсией, вызывающей разложение белого света на простые цвета.

Кроме того, игра света в алмазе зависит от правильности его огранки. Грани алмаза многократно отражают свет внутри кристалла. Вследствие большой прозрачности алмазов высокого класса свет внутри них почти не теряет своей энергии, а только разлагается на простые цвета, лучи которых затем вырываются наружу в различных, самых неожиданных направлениях. При повороте камня меняются цвета, исходящие из камня, и кажется, что сам он является источником многих ярких разноцветных лучей.

Встречаются алмазы, окрашенные в красный, голубоватый и сиреневый цвета. Сияние алмаза зависит от его огранки. Если смотреть сквозь хорошо ограненный водяно-прозрачный бриллиант на свет, то камень кажется совершенно непрозрачным, а некоторые его грани выглядят просто черными. Это происходит потому, что свет, претерпевая полное внутреннее отражение, выходит в обратном направлении или в стороны.

Если смотреть на верхнюю огранку со стороны света, она сияет многими цветами, а местами блестит. Яркое сверкание верхних граней бриллианта называют алмазным блеском. Нижняя сторона бриллианта снаружи кажется как бы посеребренной и отливает металлическим блеском.

Наиболее прозрачные и крупные алмазы служат украшением. Мелкие алмазы находят широкое применение в технике в качестве режущего или шлифующего инструмента для металлообрабатывающих станков. Алмазами армируют головки бурильного инструмента для проходки скважин в твердых породах. Такое применение алмаза возможно из-за большой отличающей его твердости. Другие драгоценные камни в большинстве случаев являются кристаллами окиси алюминия с примесью окислов окрашивающих элементов – хрома (рубин), меди (изумруд), марганца (аметист). Они также отличаются твердостью, прочностью и обладают красивой окраской и «игрой света». В настоящее время умеют получать искусственным путем крупные кристаллы окиси алюминия и окрашивать их в желаемый цвет.

Явления дисперсии света объясняют многообразием красок природы. Целый комплекс оптических экспериментов с призмами в XVII веке провел английский ученый Исаак Ньютон. Эти эксперименты показали, что белый свет не является основным, его надо рассматривать как составной («неоднородный»); основными же являются различные цвета («однородные» лучи, или «монохроматические» лучи). Разложение белого света на различные цвета происходит по той причине, что каждому цвету соответствует своя степень преломляемости. Эти выводы, сделанные Ньютоном, согласуются с современными научными представлениями.

Наряду с дисперсией коэффициента преломления наблюдается дисперсия коэффициентов поглощения, пропускания и отражения света. Этим объясняются разнообразные эффекты при освещении тел. Например, если имеется какое-то прозрачное для света тело, у которого для красного света коэффициент пропускания велик, а коэффициент отражения мал, для зеленого же света наоборот: коэффициент пропускания мал, а коэффициент отражения велик, тогда в проходящем свете тело будет казаться красным, а в отраженном свете – зеленым. Такими свойствами обладает, например, хлорофилл – зеленое вещество, содержащееся в листьях растений и обуславливающее зеленый цвет. Раствор хлорофилла в спирту при рассматривании на просвет оказывается красным. В отраженном свете этот же раствор выглядит зеленым.

Если у какого-то тела коэффициент поглощения велик, а коэффициенты пропускания и отражения малы, то такое тело будет казаться черным и непрозрачным (например, сажа). Очень белое, непрозрачное тело (например, окись магния) имеет коэффициент отражения близкий к единице для всех длин волн, и очень малые коэффициенты пропускания и поглощения. Вполне прозрачное для света тело (стекло) имеет малые коэффициенты отражения и поглощения и близкий к единицы для всех длин волн коэффициент пропускания. У окрашенного стекла для некоторых длин волн коэффициенты пропускания и отражения практически равны нулю и, соответственно, значение коэффициента поглощения для этих же длин волн близко к единице.


Явления связанные с преломлением света


Радуга

Радуга — это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя. Однако далеко не все знают, как именно преломление света на капельках дождя приводит к возникновению на небосводе гигантской многоцветной дуги. Поэтому полезно подробнее остановиться на физическом объяснении этого эффектного оптического явления. Радуга глазами внимательного наблюдателя. Прежде всего, заметим, что радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Радуга возникает, когда Солнце освещает завесу дождя. По мере того как дождь стихает, а затем прекращается, радуга блекнет и постепенно исчезает. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область — в красный. Нередко над основной радугой возникает еще одна (вторичная) радуга — более широкая и размытая. Цвета во вторичной радуге чередуются в обратном порядке: от красного (крайняя внутренняя область дуги) до фиолетового (крайняя внешняя область). Для наблюдателя, находящегося на относительно ровной земной поверхности, радуга появляется при условии, что угловая высота Солнца над горизонтом не превышает примерно 42°. Чем ниже Солнце, тем больше угловая высота вершины радуги и тем, следовательно, больше наблюдаемый участок радуги. Вторичная радуга может наблюдаться, если высота Солнца над горизонтом не превышает примерно 52. Радуга может рассматриваться как гигантское колесо, которое как на ось надето на воображаемую прямую линию, проходящую через Солнце и наблюдателя.

Таким образом, положение радуги по отношению к окружающему ландшафту зависит от положения наблюдателя по отношению к Солнцу, а угловые размеры радуги определяются высотой Солнца над горизонтом. Наблюдатель есть вершина конуса, ось которого направлена по линии, соединяющей наблюдателя с Солнцем. Радуга есть находящаяся над линией горизонта часть окружности основания этого конуса. При передвижениях наблюдателя указанный конус, а значит, и радуга, соответствующим образом перемещаются; поэтому бесполезно охотиться за обещанным горшком золота. Здесь необходимо сделать два пояснения. Во-первых, когда мы говорим о прямой линии, соединяющей наблюдателя с Солнцем, то имеем в виду не истинное, а наблюдаемое направление на Солнце. Оно отличается от истинного на угол рефракции. Во-вторых, когда мы говорим о радуге над линией горизонта, то имеем в виду относительно далекую радугу — когда завеса дождя удалена от нас на несколько километров. Можно наблюдать также и близкую радугу, на пример, радугу, возникающую на фоне большого фонтана. В этом случае концы радуги как бы уходят в землю. Степень удаленности радуги от наблюдателя не влияет, очевидно, на ее угловые размеры. Из (2.1) следует, что Ф = g - j. Для основной радуги угол у равен примерно 42° (для желтого участка радуги) а для вторичной этот угол составляет 52°. Отсюда ясно, почему земной наблюдатель не может любоваться основной радугой, если высота Солнца над горизонтом превышает 42°, и не увидит вторичную радугу при высоте Солнца, превышающей 52°. Если наблюдатель находится в самолете, то замечания относительно высоты Солнца требуют пересмотра; кстати говоря, наблюдатель в самолете может увидеть радугу в виде полной окружности.

Однако где бы ни находился наблюдатель (на поверхности Земли или над нею), он всегда есть центр ориентированного на Солнце конуса с углом раствора 42° (для основной радуги) и 52° (для вторичной).

Миражи

Миражи - это отражения каких-то вещей или явлений на поверхности раскаленного песка, асфальта, моря и т.д.

Как мне стало известно, что это происходит от того, что в разных слоях воздуха температура разная, а разность температуры действует как зеркало.

Мираж - это нечто иное, как отраженные предметы или явления, которые мы принимаем за реальность.

Полярные сияния

Полярные сияния возникают вследствие бомбардировки верхних слоёв атмосферы заряженными частицами, движущимися к Земле вдоль силовых линий геомагнитного поля из области околоземного космического пространства, называемой плазменным слоем. Проекция плазменного слоя вдоль геомагнитных силовых линий на земную атмосферу имеет форму колец, окружающих северный и южный магнитные полюса (авроральные овалы). Выявлением причин, приводящим к высыпаниям заряженных частиц из плазменного слоя, занимается космическая физика. Экспериментально установлено, что ключевую роль в стимулировании высыпаний играет ориентация межпланетного магнитного поля и величина давления плазмы солнечного ветра.

В очень ограниченном участке верхней атмосферы сияния могут быть вызваны низко энергичными заряженными частицами солнечного ветра, попадающими в полярную ионосферу через северный и южный полярные каспы. В северном полушарии каспенные сияния можно наблюдать над Шпицбергеном в околополуденные часы.

При столкновении энергичных частиц плазменного слоя с верхней атмосферой происходит возбуждение атомов и молекул газов, входящих в её состав. Излучение возбуждённых атомов в видимом диапазоне и наблюдается как полярное сияние. Спектры полярных сияний зависят от состава атмосфер планет: так, например, если для Земли наиболее яркими являются линии излучения возбуждённых кислорода и азота в видимом диапазоне, то для Юпитера — линии излучения водорода в ультрафиолете.

Поскольку ионизация заряженными частицами происходит наиболее эффективно в конце пути частицы и плотность атмосферы падает с высотой в соответствии с барометрической формулой, то высота появлений полярных сияний достаточно сильно зависит от параметров атмосферы планеты, так, для Земли с её достаточно сложным составом атмосферы красное свечение кислорода наблюдается на высотах 200—400 км, а совместное свечение азота и кислорода — на высоте ~110 км. Кроме того, эти факторы обуславливают и форму полярных сияний — размытая верхняя и достаточно резкая нижняя границы.

Полярные сияния Земли

Полярные сияния наблюдаются преимущественно в высоких широтах обоих полушарий в овальных зонах-поясах, окружающих магнитные полюса Земли — авроральных овалах. Диаметр авроральных овалов составляет ~ 3000 км во время спокойного Солнца, на дневной стороне граница зоны отстоит от магнитного полюса на 10—16°, на ночной — 20—23°. Поскольку магнитные полюса Земли отстоят от географических на ~12°, полярные сияния наблюдаются в широтах 67—70°, однако во времена солнечной активности авроральный овал расширяется и полярные сияния могут наблюдаться в более низких широтах — на 20—25° южнее или севернее границ их обычного проявления.

Полярные сияния весной и осенью возникают заметно чаще, чем зимой и летом. Пик частотности приходится на периоды, ближайшие к весеннему и осеннему равноденствиям. Во время полярного сияния за короткое время выделяется огромное количество энергии (во время одного из зарегистрированных в 2007 году возмущений — 5x1014 джоулей, примерно столько же, сколько во время землетрясения магнитудой 5,5.

При наблюдении с поверхности Земли полярное сияние проявляется в виде общего быстро меняющегося свечения неба или движущихся лучей, полос, корон, «занавесей». Длительность полярных сияний составляет от десятков минут до нескольких суток.

Заключение


Я – Кириленко Кристина написала реферат по физике на тему Оптика и Оптические явления в природе, так как мне эта тема показалась очень интересной и увлекательной , ведь оптика окружает нас везде. Написав, этот реферат я многое узнала – что такое оптика, какие оптические явления бывают в природе и.т.д. Этот реферат открыл во мне новые интересы к физике как увлекательной науке, которая затягивает в себя необычными явлениями и сложными опытами. Из этого реферата я извлекла не только пользу, но и совершила интересное путешествие в мир Оптики.

Литература

 

1. Википедия

2. Учебник по физике 11 класс. Издательство Просвещение.

3 #"#">#"#">#"#">#"1.files/image003.jpg" alt=634.jpg>

 

 

 

 


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.