Меню
Поиск



рефераты скачать Механизм воздействия электрического поля на процесс горения

Эксперименты, поставленные по схемам в и г, интересны тем, что, во-первых, исключается возможное влияние на кинетику химических реакций  теплового эффекта, получаемого в результате превращения энергии  электрического поля при прохождении тока через пламя в тепловую; во-вторых, меняя знак  электрического заряда на горелке, можно дифференцировано и более чётко выявить влияние ионного ветра на процесс распространения пламени.

Следовательно, создаются предпосылки для определения влияния имеющихся в пламени заряжённых частиц на кинетику химических реакций, так как повышение температуры пламени за счёт преобразования электрической энергии в тепловую исключено, а влияние ионного ветра можно учесть, меняя знак  электрического заряда на единственном электроде-горелке.

Прежде чем перейти к анализу влияния электрического поля на процесс распространения пламени, необходимо на примере ламинарного гомогенного пламени рассмотреть взаимосвязь величин, входящих в уравнение Гуи-Михельсона, и их влияние на внешние характеристики пламени.

Известно, что нормальная скорость uн является характеристикой процесса горения и определяется кинетикой химических реакций и температуропроводностью среды:

                                                                                                       (1)

где- средняя скорость химической реакции;

      а - температуропроводность.

С другой стороны, в соответствии с постулатом Гуи ламинарных гомогенных пламён справедливо соотношение

                                           =,                                                               (2)

где Sк - поверхность фронта пламени (внутреннего конуса);

       v- расход горючей смеси.

Таким образом, для смеси данного вида, составленного из конкретного топлива и окислителя uн =const, при постоянстве её расхода v и без изменения внешних энергетических условий поверхность внутреннего конуса Sk и его высота hk- величины постоянные при увеличении скорости горения смеси высота hk и необходимая поверхность внутреннего конуса Sk будут уменьшаться.  Уменьшение Sk наблюдается и при уменьшении расхода смеси постоянного состава (uн =const). Следовательно, связь между параметрами, характеризующими распространение ламинарного гомогенного пламени, можно представить в следующем виде:

;

  .                                                               (3)

Иными словами, при постоянстве входных условий (гидродинамических, тепловых и концентрационных) уменьшение или увеличение поверхности фронта горения происходит в результате увеличения или уменьшения uн, т.е. в соответствии с соотношением (1) uн находится  в зависимости от температуропроводности и  скорости химической реакции.

Рассмотрим распространение гомогенного пламени в  продольном электрическом поле и при наличии одного заряда на горелке в соответствии со схемами, показанными на рис. 2, с целью индивидуальной оценки влияния поля по таким характеристикам, как скорость горения и пределы устойчивости пламени по срыву и проскоку.

В процессе анализа предположим, что в каждом случае влияние электрического поля на распространение пламени представлено следующими факторами.

Ионный ветер

Механическое увеличение потоком положительных ионов всей массы газов к отрицательному электроду-горелке в случае наложения продольного электрического поля по схеме а (см.рис 2) должно вызвать уменьшение высоты внутреннего конуса и поверхности горения  Sk; и наоборот, при схеме б, когда горелка находится под положительным потенциалом, следует ожидать увеличение kh и Sk.

В соответствии с соотношениями (2) и (3) при постоянстве входных и внешних условий такие изменения hk и Sk объясняются только изменением uн, т.е. увеличением или уменьшением нормальной скорости пламени.

С точки зрения тепловой теории эффект ионного ветра можно объяснить тем, что положительные ионы, увлекая за собой массу раскалённых газов при наложении поля по рис. 2, а, приближают зону с более высокой температурой к горелке, в результате чего создаются условия для более интенсивного теплообмена между раскалёнными продуктами сгорания и свежей горючей смесью. Это в свою очередь вызывает ускорение реакции и смещение фронта пламени ближе к горелке, при наложении поля по рис. 2,  б зона с   более высокой температурой будет смещаться вверх, так как ионы увлекут за собой к катоду нейтральную массу  раскалённых газов  Теплообмен со свежей смесью в этом случае ухудшиться, развитие горения замедлится и фронт пламени увеличит поверхность горения.

При наложение заряда на горелку по рис. 1, в и г возможные изменения hk и Sk, происходящие за счёт электрического взаимодействия положительных ионов с зарядом на горелке, могут быть объяснены также, как и влияние поля. Однако эффект изменения Sk  окажется значительно слабее.

Рассмотрим влияние электрического поля и заряда по пределу устойчивости по срыву и проскоку пламени, стабилизированного на горелке, принимая за основной механизм воздействия ионный ветер. Простейшим условием устойчивого горения является равенство       

В случаях, рассмотренных на рис.2, а и в, в соответствии с проведённым анализом влияния поля на скорость горения и принятой трактовкой ионного ветра, следует ожидать расширение области устойчивого распространения в сторону более высоких критических скоростей срыва и её сужения за счёт увеличения критической скорости, соответствующей проскоку пламени. Поток положительных ионов, увлекая за собой массу раскалённых газов, будет содействовать стабилизации пламени на отрицательно заряжённой горелке.

В случае положительного заряда на горелке (см. рис 2,  б и г ) поток положительных ионов и масса нейтральных  раскалённых газов  будут стремится сорвать пламя с горелки, т. е. область устойчивого горения будет сужаться за счёт уменьшения критической скорости срыва. Вместе с тем в этих вариантах область устойчивого горения может расширятся в результате уменьшении критической скорости проскока пламени в горелку.

Если рассматривать стабилизированное  на электролизованном кольце пламя, приподнятое на некоторую высоту над горелкой (вариант “висящего” пламени), то наложение продольного электрического поля по схеме на рис.2, а, должно вызвать стабилизацию пламени на устье горелки  под действием ионного ветра. Того же самого, но при более высоком значении потенциала можно ожидать при наложении на горелку электрического заряда по рис. 2, в.

Однако при наложении продольного электрического поля по рис.2, б и заряда по рис.2, г стабилизация предварительно сорванного пламени на положительно заряженную горелку – процесс неосуществимый, если его не объяснять ионным ветром; напротив, поле (см. рис.2, б) и заряд (см. рис.2, г), если следовать понятию ионного ветра, должны содействовать дальнейшему срыву пламени.

В таблице 1 приведены  те вероятные экспериментальные эффекты, которые можно ожидать при распространении пламени в электрическом поле, предполагая, что определяющим фактором является один из трёх механизмов воздействия. с № 2в, 2г, 3а и 3в, хотя и характеризуются отсутствием влияния поля на распространение пламени, но только в первом приближении, так как при наложении на горелку  отрицательного заряда (вариант 2в) через пламя потечёт ток положительных ионов, а в варианте 2г – ток электронов. В принципе при этом движении к горелке заряжённые частицы будут испытывать упругие соударения и в какой-то мере повышать энтальпию пламени.

При рассмотрении вариантов № 3а и 3в также предполагаем, что влияние электрического поля на распространение пламени отсутствовало, хотя при этом не учитывали такой фактор, как поляризация химически активных частиц под действием электрического поля, способствующих развитию химических процессов. В этих вариантах влияние электрического поля объясняется неупругими соударениями электронов с частицами, но так как в вариантах № 3а и 3в электроны не могут проходить через свежую смесь, а в соответствии с направлением поля ускоряются в сторону продуктов сгорания, то их влияние на подготовку к горению свежей смеси будет ослаблено полем.

Анализ таблицы 1 позволяет сделать следующие выводы:

1.                       каждый из трёх механизмов влияние электрического поля на процесс распространения пламени определяется направлением поля;

2.                       в зависимости от направления поля в реальных системах, когда

      на распространение пламени могут влиять все три фактора,

     можно    выделить доминирующие процессы[19].

Гипотеза о прямом воздействии электрического поля на кинетику процесса горения является логичным следствием гипотезы Томсона[2] об активной роли ионов и электронов в процессе горения. Предполагалось, что благодаря электронам и ионам, возникающим во фронте пламени, горячая смесь подготавливается к вступлению в реакцию, и, следовательно, заряжённые частицы определяют процесс распространения пламени. Для подтверждения своей гипотезы Д.Томсон поставил эксперимент по облучению гремучего газа вторичными электронами, выбиваемыми рентгеновскими лучами из свежепрокаленной платиновой проволочки. В результате произошёл взрыв водородно-кислородной смеси. И хотя в последствии эксперимент был признан некорректным (реакцию горения водорода, наблюдаемую Томсоном, объяснили каталитическим воздействием платины[13]), гипотеза эта приобрела сторонников и стала основой для объяснения многих эффектов, возникающих при наложении на пламя электрического поля. Так, результаты работы[9], в которой показано, что пламенна метана, ацетилена и этилена в поперечном поле с разностью потенциалов 50 – 1800 В (при межэлектродном зазоре 4,85 см) гаснут, авторы объясняют следующим образом: поскольку заряжённые частицы ответственны за распространение пламени, являясь передатчиками энергии к свежей смеси, поскольку при наложении поперечного поля электроны и ионы, рождающиеся во фронте, будут удалятся из зоны горения  на электроды, в результате чего их концентрация уменьшится настолько, что при достижении критической напряжённости поля горение прекратится – пламя гаснет.

В пользу гипотезы о прямом воздействии поля на горение свидетельствуют результаты работ по изучению влияния поля на период индукции и температуру самовоспламенения жидких[18,22] и газообразных топлив. В них показано, что в зависимости от направления поля период индукции и температуры самовоспламенения могут увеличиться или уменьшатся по сравнению с теми же параметрами, в отсутствие поля. Полученные результаты авторы объясняют участием отрицательных ионов в процессе медленного окисления.

Суммируя всё вышеизложенное, следует указать, что две основные точки зрения на механизм воздействия электрического поля на процесс горения(воздействие на газодинамику процесса или прямое воздействие на кинетику реакции) являются отражением двух более общих концепций относительно роли и места заряжённых частиц в процессе горения, одна из которых отрицает, а вторая предполагает  участие заряжённых химически активных частиц в механизме окисления и горения.

Отрицать  существенное влияние массовых сил, возникающих в газе при наложении на пламя электрического поля, на процесс горения, особенно, когда напряжённость поля велика, но локальный пробой у электродов не возникает, очевидно, нельзя, тем более, что во многих экспериментах поле наложено таким образом, что какого-либо иного воздействия поля, кроме как через механизм ионного ветра, ожидать трудно.

Дело в том, что в цитированных исследованиях поле накладывается интегрально на всё пламя, а в этом случае в результате экранирования поля заряженными частицами, имеющимися в области догорания, напряжённость поля в реакционной зоне и в области подготовки будет близка к нулевой[3]. Очевидно, что такое поле способно повлиять на кинетику реакций только в зоне догорания, т.е. там, где основные процессы в том числе и с участием ионов практически завершено.

Вместе с тем, не менее очевидно, что кинетический механизм воздействия поля способен повлиять на макроскопические параметры горения только тогда, когда удастся создать поле с напряжённостью, достаточной  для заметного разделения зарядов именно в реакционной зоне и – в свете последних исследований процесса ионообразования в пламёнах – в области подготовки.  При этом желательно, чтобы напряжённость поля в зоне догорания была небольшой, т.к. позволила бы избежать искажающего влияния ионного ветра.

Заключение и задачи исследования.


Анализ современного состояния вопроса позволяет  сделать следующие выводы:

 -существующая в пламёнах неравновесная ионизация обусловлена процессом хемиионизации,  причём концентрация заряжённых частиц в пламени зависит от вида топлива и условий горения и может превосходить равновесную на 4-6 порядков;

-в пламени происходит разделение зарядов, вследствие чего пламя имеет собственное электрическое поле сложной конфигурации;

-воздействие внешних электрических полей на заряжённую компоненту пламени приводит к изменению макроскопических параметров горения.

Вместе с тем, анализ многочисленных работ, посвящённых изучению электрофизических воздействий на различные пламенна, позволяет констатировать, что в большинстве исследований игнорируется сложная электрическая структура пламени, электрические поля накладываются интегрально, т.е. на всё пламя в целом. При этом основное падение напряжения сосредоточено между внешней зоной горения пламени и продуктами горения, т.е. в область подготовки поле не проникает. Очевидно, что при использовании таких схем наложения поля (поле воздействует на область догорания, в которой химические реакции в основном завершены) основным механизмом воздействия поля на горение является механизм ионного ветра. Однако, по нашему мнению, это не даёт оснований утверждать, что воздействие электрического поля на горение ограничивается только этим механизмом.

В эксперименте  исследуемые топлива были условно разделены на три класса: сильно коптящие – бензол, средне коптящие – гексан, мало  коптящие – метанол.

Литература.


1.                 Фиалков Б.С., Плицин В.Т. Кинетика движения и характер горения кокса в доменной печи.-М.:Металлургия,1971.-288с.

2.                 Tomson J.J., Tomson G.P. Condactivity of Electricity Fhrougy Gases.-1928.-Vol.1

3.                 Лаутон Дж., Вайнберг Ф. Электрические аспекты горения.-М.Энергия,1976.-296с.

4.                 Фиалков Б.С., Щербаков Н.Д., Плицин В.Т. Распределение электрического потенциала  в углеводородных пламенах //ФГВ.- с1978.-т.14,в.2.-с.104-108.

5.                 Лавров  Ф.А., Малиновский А.Э. Влияние продольного электрического поля на процесс горения газовых смесей.//ЖФХ.-1933.-т.4,в.1.-с.104-108.

6.                 Фиалков Б.С., Щербаков Н.Д. Распределение положительных ионов в пламёнах смесей пропан-бутана с воздухом.// ФГВ.-1980.-т.54, в.10. –с. 2655-2659.

7.                 Кидин Н.И., Либрович  В.Б.О собственном электрическом поле ламинарного пламени. // ФГВ.-1974.-т. 10, в. 5. –с .696-705.

8.                 Кидин Н.И., Михвиладзе Г.М. .Электрическое поле ламинарного пламени с большой степенью ионизации. // ФГВ.-1976.-т. 12, в.6. –с.865-871.

9.                 Малиновский А.Э., Лавров  Ф.А. О влиянии электрического поля на процессы горения в газах.//ЖФХ. -1931. –т.2, в.3-4. –с.530-534.

10.             Малиновский А.Э., Россихин В.С., Тимковский В.П. Влияние переменного электрического поля высокой частоты на скорость горения  газа.//ЖЭТФ. -1934. –т.4, в.2. –с.183-188.

11.            Малиновский А.Э., Россихин В.С., Наугольников Б.И. Исследование горения смеси ацитилена с воздухом в магнитном поле.//ЖЭТФ. -1934. –т.4, в.2. –с.189-192.

12.            Малиновский А.Э., Скрипников К.А. К вопросу о возможности зажигания гремучего газа рентгеновскими фотоэлектронами.//ЖЭТФ. -1934. –т.4, в.2. –с.192-197.

13.            Малиновский А.Э., Ткаченко К.Т. Перенос ионов  взрывной волной.//ЖЭТФ. -1934. –т.4, в.2. –с.198-202.

14.            Малиновский А.Э., Наугольников Б.И., Ткаченко К.Т. Фоторегистрация скорости  распространения взрывной волны в электрическом поле.//ЖЭТФ. -1934. –т.4, в.2. –с.203-207.

15.            Малиновский А.Э., Егоров К.Е. .  Влияние электрического поля на процессы горения при повышенном давлениях.//ЖЭТФ. -1934. –т.4, в.2. –с.208-214.

16.            Малиновский А.Э., Россихин В.С., Тимковский В.П. Влияние частоты электрического поля на скорость горения газов.//ЖЭТФ. -1934. –т.4, в.2. –с.208-214.

17.            Малиновский А.Э. Тепловое зажигание газовых смесей.//Социалистическая реконструкция и  наука. -1935. –в.7. -744-746.

18.            Малиновский А.Э., Наугольников Б.И., Ткаченко К.Т. Исследование ионизации и давления на фронте взрывной волны. Взрывная волна преддетоционного периода.//ЖЭТФ. -1936. –т.6, -в.3. –с 287-290.

19.            Степанов Е.М., Дьячков Б.Г.  Ионизация в пламени и электрическое поле. – М.:Металлургия.,1968 г.- 310 с.

20.            Гейдон А.Г., Вольфгард Х.Г. Пламя, его структура, излучение и температура. – М.:Металлургиздат,1959. -333 с.



Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.