Меню
Поиск



рефераты скачать Модернизация системы электроснабжения цеха по производству хлебобулочных изделий ООО "Пальмира"

По длительно допустимому току для прокладке в воздухе с t=25оС выбираем кабель с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке АСБ(335), сечение которого F=35 мм2 [2]

Fэ<F

7,65<35


1.11.3 Проверка кабеля по току короткого замыкания на термическую стойкость

Минимальное сечение, устойчивое к токам КЗ


Fmin=, (1.40)


где Fmin – минимальное сечение, устойчивое к токам КЗ, мм2;

tоткл – время отключения кабеля при КЗ, с;

tоткл=0,12 с [5]

Та – постоянная затухающая для апериодического тока КЗ, с;

Та=0,01 с [5]

с – постоянный коэффициент;

с=85 [5]

Fmin= мм

Условие проверки на термическую стойкость к токам КЗ Fmin<F выполняется, т.к. 4,18<35, значит кабель, устойчив к токам КЗ.


1.11.4 Проверка выбранного сечения кабеля по потерям напряжения


∆U=, (1.41)


где ∆U – потери напряжения, %;

l – длина кабельной линии, км

∆U=

Условие проверки ∆U<∆Uд выполняется, т. к. 0,084%<5% [9].

Окончательно выбираем кабель АСБ(335) [2].


1.12 Выбор выключателя и выключателя нагрузки


1.12.1 Выбор вакуумного выключателя


Таблица 1.8

Расчетные данные

Паспортные данные

Uн=6 кВ

Uну=6,3кВUн=6,3кВ

Ip=10,71 А

Iн=400А>Iр=10,71А

Iкз=0,99 кА

Iоткл=4кА>Iкз=0,99кА

Вк=0,13 к

Iтерм=4кА, tтерм=4c

42∙40,13

iуд=2,54 кА

iдин=10кАiуд =2,54кА


Выбираем BB/TEL-6–4/400-У2


1.12.2 Выбор выключателя нагрузки

Для коммутации электрических цепей в номинальном режиме перегрузки используется выключатель нагрузки, имеющий облегченную конструкцию дугогасительной камеры и меньшую стоимость.


Таблица 1.9

Расчетные данные

Паспортные данные

Uн=6 кВ

Uну=6 кВ

Ip=10,71 A

Iн=40А>Ip=10,71A

Iуд=2,51 кА

Iуд=10кА>iуд=2,51кА


Выбираем ВНПу-6/80–17УЗ

где П – пружинный

у – с усиленной контактной схемой;

УЗ – климатическое исполнение

Выбираем предохранитель ПК-101–6–10–31.5–40УЗ [6]


Таблица 1.10

Расчетные данные

Паспортные данные

Uн=6 кВ

Uну=6 кВ

Ip=10,71 A

Iн=2кА>Ip=10,71A

Iкз=0,99 кА

Iоткл=20кА>Iкз=0,99кА


Произведенный расчет выполнен в соответствии с действующими нормативными документами и инструкциями по ПТЭ и ПТБ.

 

 


2. Расчет защитного заземления и заземляющих устройств


Заземляющим устройством называют совокупность заземлителя и заземляющих проводников. Заземлителем называют металлический проводник или группу проводников, находящихся в непосредственном соприкосновении с землей. Заземляющими проводниками называют металлические проводники, соединяющие заземляемые части электроустановок с заземлителем.

Заземляющие устройства должны удовлетворять требованиям обеспечения безопасности людей и защиты электроустановок, а также обеспечения эксплуатационных режимов работы. Все металлические части электрооборудования и электроустановок, которые могут оказаться под напряжением вследствие нарушения изоляции, заземляют. Каждый элемент установки, подлежащий заземлению, присоединяют к заземлителю или к заземляющей магистрали с помощью отдельного заземляющего проводника.

Сопротивление заземляющего устройства согласно ПУЭ не должно превышать 4 Ом, а в электроустановках с суммарной мощностью параллельно работающих генераторов и трансформаторов 100 кВА и ниже оно не должно быть больше 10 Ом. Расчет заземляющих устройств сводится главным образом к расчету собственно заземлителя, т.к. заземляющие проводники в большинстве случаев принимаются по условиям механической прочности и устойчивости к коррозии. Исключение составляют лишь установки с выносным заземляющим устройством. В этих случаях рассчитывают последовательно сопротивление соединительной линии и сопротивление заземлителя, чтобы суммарное не превышало расчетного.


2.1 Расчет сопротивления заземлителя


Устанавливается необходимое по ПУЭ допустимое сопротивление заземляющего устройства Rз. Если заземляющее устройство является общим для нескольких электроустановок, то расчетным сопротивлением заземляющего устройства является наименьше из требуемых.


 (2.1)


где расчетное напряжение на заземляющем устройстве принято равным 125 В, т.к. заземляющее устройство используется также для установок подстанции до 1000 В.

I=42 А – наибольший ток через заземление при замыкании на землю со стороны 6 кВ.

 Ом

Согласно ПУЭ Rз4 Ом; 2,974


2.2 Заземляющие устройства


Заземляющее устройство выполним в виде контура, проложенного на глубине 0,7 м, состоящего из вертикальных электродов диаметром 20 мм длиной 2 м и приваренных к их верхним концам горизонтальных электродов из стали диаметром 20 мм на расстоянии друг от друга 4 м.

Общая длина полосы l= м, предварительное количество стержней 46.


2.3 Расчет удельного сопротивления грунта


Определения удельного сопротивления грунта с учетом повышающих коэффициентов, учитывающих высыхание грунта летом и промерзание его зимой.


Срасч=кс∙с, (2.2)


где срасч – расчетное удельное сопротивление грунта, Ом∙м;

с – удельное сопротивление грунта, измеренное при нормальной влажности, Ом∙м;

с=100 Ом∙м для суглинка [6]

кс – коэффициент сезонности, учитывающий промерзание и просыхание грунта;

кс=1,15–1,45 – для вертикальных электродов [6]

кс=2,0–3,5 – для горизонтальных электродов [6]


2.3.1 Расчетное удельное сопротивление грунта для вертикальных электродов

срасч.в=1,25∙100=125 Ом∙м


2.3.2 Расчетное сопротивление грунта для горизонтальных электродов

срасч.г=3∙100=300 Ом∙м


2.4 Сопротивление растекания одного вертикального электрода


, (2.3)


где rв – сопротивление одного вертикального заземлителя, Ом;

l – длина заземлителя, м;

d – диаметр электрода, м;

t – глубина заложения, равная расстоянию от поверхности земли до середины заземлителя, м


 Ом

Определяется необходимое количество стержней.


, (2.4)


где nв – количество вертикальных стержней;

ŋв – коэффициент использования вертикальных заземлителей, зависящих от расстояния между ними а, их длины l и количества [7]

ŋв=0,55 для а/l=2 и n=46

Определяется сопротивление горизонтальных заземлителей


, (2.5)


где l – длина полосы, м

rг= Ом

Определяется сопротивление полосы в контуре


, (2.6)


где зг – коэффициент использования соединительной полосы в контуре из вертикальных электродов; [7]

зг=0,29 при а/l=2 и n=46

 Ом


Определятся необходимое сопротивление вертикальных заземлителей

 Ом


2.5 Уточнение количества стержней



Т.о. окончательно принимаем nґв=42.

Произведенный расчет выполнен в соответствии с действующими нормативными документами и инструкциями по ПТЭ и ПТБ ООО «Пальмира».




3. Тепловые расчеты


3.1 Определение теплопотерь через ограждения цеха по производству хлебобулочных изделий


3.1.1 Определение теплопотерь через наружные стены

В данной работе при определении тепловых потерь через наружные стены рассматриваем участок цеха по производству хлебобулочных изделий. Здание цеха является одноэтажным. Расчетную температуру наружного воздуха принимаем равной tнар=-220С; расчетную температуру воздуха внутри помещения принимаем равной tвн=250С.

Боковые наружные стены помещения изготовлены из кирпича на тяжелом растворе; с внутренней стороны стены покрыты известковой штукатуркой, с внешней – цементной штукатуркой.

dнар=0,025 м lнар=1,16 Вт/(м0С)

dк=0,64 м lк=0,81 Вт/(м0С)

dвн=0,015 м lвн=0,7 Вт/(м0С)

Степень черноты наружной поверхности e=0,9.

Высота здания h=7 м. Скорость ветра W=15 м/с.

Термическое сопротивление многослойной стенки


 (3.1)


Термическое сопротивление у внутренней поверхности стенки

Принимаем температуру внутренней поверхности стенки tвн.ст=7,416 0С

При внутренней температуре имеем следующие физические свойства воздуха: tвн=250С – Число Прандтля Pr=0,7036.

Коэффициент кинематической вязкости воздуха n=14,79∙10-6 м2/0С.

Коэффициент теплопроводности воздуха l=2,566∙10-2 Вт/(м0С).

Критерий Грасгофа:


, (3.2)


где bв-коэффициент объемного расширения воздуха

bв=1/(273+tвн)

Dt – перепад температур Dt=tвн – tвн.ст

,

l=h – высота здания

Произведение критерия Грансгофа на число Прандтля равно:

При (Gr∙Pr)>109 имеем турбулентный режим.

Определим конвективный коэффициент теплоотдачи при естественной циркуляции воздуха


, (3.3)


,

где h – высота здания.

Термическое сопротивление на внутренней поверхности стенки


, (3.4)


Термическое сопротивление на наружной поверхности здания

Коэффициент теплоотдачи


aнар=aк.нар+aл, (3.5)


где aк.нар – конвективный коэффициент теплоотдачи

aл – коэффициент теплоотдачи излучением

Пусть температура наружной поверхности стены tнар.ст= – 21.164 0С

aк=f(Re)

Критерий Рейнольдса:


Re = (W∙L)/n, (3.6)


где W – скорость ветра, W=15 м/с;

L – высота здания, L=7 м.

Физические свойства воздуха при tнар= – 220С:

коэффициент кинематической вязкости воздуха n=11,704∙10-6 м2/с;

коэффициент теплопроводности воздуха l=2,264∙10-2 Вт/(м2∙С).

Число Прандтля Pr=0,7174


, (3.7)



, (3.8)



, (3.9)


При Re > 5∙105 критерий Нуссельта можно определить по формуле:

где С=5,7 Вт/(м2К4) – коэффициент излучения абсолютно – черного тела

e=0,9 – степень черноты стены.



Проверка температуры наружной и внутренней поверхности стенки


R=Rвн+R+Rнар


R=0,28+0,8331+0,024=1,138 (м2∙С)/Вт       

Температура наружной поверхности стенки


tнар.п=tнар+((tвн-tнар)∙Rнар)/R


tнар.п=-22+((25+22)∙0,024)/1,138=-21,1770С

Dt – расхождение в заданной и полученной температуре не превышает 0,50С, следовательно дальнейших приближений делать не надо.


tвн.п=tвн – ((tвн – tнар)∙Rвн)/R


tвн.п=25 – ((25+22)∙0,28)/1,138=7,4040С       

Dt – расхождение в заданной и полученной температуре не превышает 0,5 0С, следовательно дальнейшие приближения делать не надо.

Общие теплопотери для цеха


Q=(F∙Dt)/R


где F – поверхность боковых стен цеха, соприкасающихся с наружным окружающим воздухом; F=519,345 м2

Dt – перепад температур; Dt=25 – (–22)=47 0С

R – общее термическое сопротивление; R=1,138 (м2∙С)/Вт

Q=(519,345∙47)/1,138=17798,29 Вт

Общие теплопотери через стены цеха составляют Qст=17798 кВт


3.2 Расчет теплопотерь через окна


3.2.1 Термическое сопротивление воздушной прослойки

В данном случае мы имеем дело с трехслойной плоской стенкой. Два слоя стекла имеют толщину 1,5 мм. Ввиду весьма малой толщины стекол их термическим сопротивлением пренебрегаем, а учитываем только воздушную прослойку, толщина которой d=0,08 м. Ради облегчения расчета сложный процесс конвективного теплообмена в воздушной прослойке заменяется на элементарное явление теплопроводности, вводя при этом понятие эквивалентного коэффициента теплопроводности lэкв.

Если разделить lэкв на коэффициент теплопроводности воздуха l, то получим безразмерную величину e=lэкв/l, которая характеризует собой влияние конвекции и называется коэффициентом конвекции.

e=f (Gr∙Pr)

Критерий Грасгофа



где bв-коэффициент объемного расширения воздуха


bв=1/(273+tср)


Dt – перепад температур Dt=tвн.п – tнар.п

d=0,08 м – толщина воздушной прослойки

g=9,81 м/с2 – ускорение свободного падения

Допустим, что температура наружной поверхности окна tнар.п= – 20,938 0С, а температура внутренней поверхности окна tвн.п=4,115 0С, тогда средняя температура воздушной прослойки.

tср=0,5 (tнар.п+ tвн.п)=0,5 (–20,938+4,115)= – 8,4115 0С

При этой температуре физические свойства воздуха:

коэффициент теплопроводности воздуха l=2,373∙10-2 Вт/(м0∙С)

коэффициент кинематической вязкости воздуха n=12,57∙10-6 м2/с

Число Прандтля Pr=0,7112

Произведение критерия Грасгофа на число Прандтля равно:

При (Gr∙Pr)>103

, (3.10)

Эквивалентный коэффициент теплопроводности воздушной прослойки

lэкв=6,89∙2,373∙10-2=0,163 Вт/(м0∙С)

Термическое сопротивление воздушной прослойки

Rпр=d/lэкв

Rпр=0,08/0,163=0,49 (м2∙0С)/Вт


3.2.2 Термическое сопротивление у внутренней поверхности окна

Внутри здания всегда наблюдается естественная циркуляция воздуха. Известно, что конвективный коэффициент теплоотдачи при естественной циркуляции воздуха:


aк.вн=f (Gr∙Pr)


Найдем эти критерии при температуре воздуха в помещении tвн=250С и высоте окна l=3 м.

Критерий Грасгофа



где bв-коэффициент объемного расширения воздуха


bв=1/(273+tвн)


Dt – перепад температур Dt=tвн – tвн.п

l=3 м – высота окна

При температуре tвн=250С коэффициент кинематической вязкости воздуха

n=14,79∙10-6 м2/с

Ускорение силы тяжести g=9,81 м/с2

Критерий Прандтля при tвн=250С равен Pr=0,7036

Произведение критерия Грасгофа на число Прандтля равно:

При (Gr∙Pr)>109 имеем турбулентный режим

Определим конвективный коэффициент теплоотдачи при естественной


, (3.11)


где l – высота окна.

Коэффициент теплопроводности воздуха при tвн=250С l=2,566∙10-2 Вт/(м2∙0С)

Термическое сопротивление на внутренней поверхности стенки




3.2.2 Термическое сопротивление на наружной поверхности здания

Коэффициент теплоотдачи


aнар=aк.нар+aл


где aк.нар – конвективный коэффициент теплоотдачи

aл – коэффициент теплоотдачи излучением

Пусть температура наружной поверхности стены tнар.ст= – 20.938 0С

aк=f(Re)

Критерий Рейнольдса:


Re =(W∙L)/n


где W – скорость ветра, W=15 м/с

L – высота окна, L=3 м

Физические свойства воздуха при tнар= – 220С:

коэффициент кинематической вязкости воздуха n=11,704∙10-6 м2/с

Страницы: 1, 2, 3, 4, 5




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.