Меню
Поиск



рефераты скачать Моделирование распределения примесей в базе дрейфового биполярного транзистора

Моделирование распределения примесей в базе дрейфового биполярного транзистора

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Херсонський національний технічний університет

Кафедра фізичної електроніки й енергетики











РОЗРАХУНКОВО-ПОЯСНЮВАЛЬНА ЗАПИСКА

ДО РОЗРАХУНКОВО-ГРАФИЧНОЇ РОБОТИ

з дисципліни

“МОДЕЛЮВАННЯ В ЕЛЕКТРОНІЦІ”

на тему:

“Моделювання розподілу домішків в базі дрейфового біполярного транзистора”

2007 р

Задани

Построить зависимость прямого коэффициента усиления по току ВN от частоты BN=f(f) и зависимость предельной частоты от тока эмиттера (коллектора) fT=f(IK) для кремниевого биполярного дрейфового n-p-n транзистора, если задано:

- концентрация примеси на переходе коллектор-база – NКБ = 3∙1015 см-3;

- концентрация примеси на переходе эмиттер-база – NЭБ = 1,5∙1017 см-3;

- толщина базы по металлургическим границам p-n переходов - Wбо = 1,2 мкм;

- площадь эмиттера – SЭ = 8∙10-5 см2;

- площадь коллектора- SК = 1,2∙10-4 см2;

- сопротивление области коллектора - RK = 35 Ом;

- сопротивление базы – rб = 45 Ом;

- собственная концентрация носителей в кремнии - ni =1,4∙1010 см-3;

- константа для расчета времени жизни электронов - τno= 1,5∙10-6 с;

- константа для расчета времени жизни дырок - τpo = 3,6∙10-7 с;

- рабочее напряжение на коллекторе (напряжение измерения параметров)- VK = 4 В;

- диапазон рабочих токов эмиттера (коллектора) IЭ= IК = (0,1 - 100) мА.

Расчет вспомогательных величин, необходимых для дальнейших расчетов

Все величины рассчитываются для нормальных условий (Р=1 атм., Т= 3000К). Этот расчет проводится в следующем порядке:

а). Контактная разность потенциалов на p-n переходах определяется по выражению [1,6]:


;(1.1.)


где: - φТ – тепловой потенциал, , равный при Т = 3000К, φТ = 0,026В;

-                     Npn – концентрация примеси на p-n переходе.

Подстановка численных значений концентраций из задания дает:

-                     для коллекторного перехода при Npn = NКБ


;


-                     для эмиттерного перехода при Npn = NЭБ


;


б). Время жизни электронов вблизи p-n переходов оценивается по выражению:


;(1.2)


и будет составлять:

-                     для эмиттерного p-n перехода


в). Время жизни дырок вблизи p-n переходов оценивается по выражению:


(1.3)


и будет составлять:

-                      для эмиттерного p-n перехода



г). Подвижность электронов вблизи p-n переходов определяется по выражению [4,7]:


(1.4)


-                     и для эмиттерного p-n перехода:


д). Подвижность дырок вблизи p-n переходов определяется по выражению [7]:


(1.5)


-                     и для эмиттерного p-n перехода:



е). Коэффициент диффузии носителей заряда вблизи p-n переходов определяется соотношением Эйнштейна [1, 4, 6, 7]:


(1.6)


и будет равен:

-                     для электронов вблизи эмиттерного p-n перехода:



-                     для дырок вблизи эмиттерного p-n перехода:


ж). Диффузионная длина носителей заряда вблизи p-n переходов определяется по выражению [1, 4, 6]:


;(1.7)


и будет составлять:

-                     для электронов вблизи эмиттерного p-n перехода:


;


- для дырок вблизи эмиттерного p-n перехода:


Расчет типового коэффициента усиления дрейфового транзистора

Для расчета коэффициента усиления по току и времени пролета носителей через базу n-p-n транзистора вначале необходимо определить характеристическую длину акцепторов в базе по выражению [4]:


 (1.8)


Она будет равна:


 

Затем определим толщину активной базы Wба в заданном режиме измерения по выражению:


 (1.9)


где: - ε – диэлектрическая постоянная материала, равная для кремния 11,7;

-                     ε0 – диэлектрическая проницаемость вакуума, равная 8,86∙10-14 Ф/см;

-                     е – заряд электрона, равный 1,6∙10-19 Кл.

- VK – рабочее напряжение на коллекторе транзистора.

При подстановке численных значений получим:



Коэффициент переноса носителей через базу для дрейфового n-p-n транзистора определяется по выражению:


 (1.10)


и он будет равняться:


 0,99819


Коэффициент инжекции для дрейфового n-p-n транзистора определяется по выражению:


 (1.11)


и будет составлять:


0,99609


a)                Коэффициент передачи тока любого биполярного транзистора – α определяется по формуле:


 (1.12)


где: æ – коэффициент эффективности коллектора.

Обычно считают, что для кремниевых транзисторов значение æ = 1.

Подстановка численных значений в формулу (1.12) дает для n-p-n транзистора значение:

 

Прямой коэффициент усиления по току для n-p-n транзистора определяется выражением:


; (1.13)


Подстановка численных значений дает значение:

173 (ед.)

Расчет частотных свойств биполярного дрейфового транзистора


В общем виде предельная частота fT транзистора определяется по выражению:


 (1.14)


где:

-                     τз – время задержки сигнала;

-                     τк – время переключения емкости коллектора;

-                     τэ – время переключения емкости эмиттера;

-                     τпр.б – время пролета базы неосновными носителями;

-                     τопз – время пролета ОПЗ коллекторного р-п перехода;

Времена переключения емкостей определяются по временам заряда-разряда RC-цепей.

Время переключения емкости коллектора τк определяется по выражению:


 (1.15)


где: Ск –емкость коллектора,


 (1.16)


и при подстановке численных значений составляет:


 

С учетом полученных значений и используя выражение (1.15) получаем:


 


Время пролета базы определяется по выражению [4]:


 (1.17)


и будет равно:


 


Время пролета ОПЗ p-n перехода коллектор-база определяется по выражению [4]:


 (1.18)


где:

-                     Vдр.н. – дрейфовая скорость насыщения, которая для электронов в кремнии равна 1∙107 см/с.

При подстановке численных значений получим:


 


Время переключения емкости эмиттера τэ в транзисторе определяется по выражению:

 (1.19)


Барьерная емкость p-n перехода эмиттер-база в прямом включении определяется по выражению:


 (1.20)


и при подстановке численных значений будет составлять:


 


Учитывая, что при коэффициентах усиления по току ВN≥50 ед., ток эмиттера мало отличается от тока коллектора, то дифференциальное сопротивление эмиттера в заданном режиме измерений определяется выражением:


 (1.21)


где:

-                     φT – тепловой потенциал, который для кремния при T=300°K составляет ;

-                     КЗ – коэффициент запаса, принимаемый в диапазоне от 1,05 до 1,2 и принятый в данном случае равным КЗ =1,1;

-                     IK – ток в режиме измерения параметров транзистора.

Расчет дифференциального сопротивления эмиттера проводится для указанного в задании диапазона токов эмиттера или коллектора. В данном случае это сопротивление рассчитывают для токов коллектора: 0,1 мА (1∙10-4 А); 0,2 мА (1∙10-4 А); 0,5 мА (1∙10-4 А); 1 мА (1∙10-3 А); 2 мА (1∙10-3 А); 5 мА (5∙10-3 А); 10 мА (1∙10-2 А); 20 мА (2∙10-3 А); 50 мА (1∙10-3 А); 100 мА (1∙10-3 А). Данные расчета дифференциального сопротивления эмиттера по выражению (1.21) для указанных токов приводятся в таблице 1.1.

Данные расчета времени переключения емкости эмиттера по выражению (1.19) приводятся в таблице 1.1.

Данные расчета предельной частоты переменного сигнала в транзисторе по выражению (1.14) приводятся в таблице 1.1.

Пример расчета предельной частоты при токе коллектора, равного 2 мА:

- согласно (1.21):


14,3 Ом;


- согласно (1.19):


1,487∙10-10 с;


- согласно (1.14):



Таблица 1.1

Данные расчета предельной частоты биполярного транзистора при разных токах коллектора

τк , с

τпр.б , с

τопз , с

СЭ, Ф

IК, А

RЭ, Ом

τЭ , с

fT, Гц





7,02∙10-12





1,3769∙10-10





7,07∙10-12





11,5∙10-12

1∙10-4

286

2,974∙10-9

4,99∙107

2∙10-4

143

1,487∙10-9

9,36∙107

5∙10-4

57,2

5,949∙10-10

1,97∙108

1∙10-3

28,6

2,974∙10-10

3,12∙108

2∙10-3

14,3

1,487∙10-10

4,41∙108

5∙10-3

5,72

5,95∙10-11

5,86∙108

1∙10-2

2,86

2,97∙10-11

6,58∙108

2∙10-2

1,43

1,49∙10-11

7,00∙108

5∙10-2

0,57

5,9∙10-12

7,29∙108

1∙10-1

0,29

3,0∙10-12

7,39∙108


Литература


1.                Трутко А.Ф. Методы расчета транзисторов. Изд 2-е, перераб. и доп.- М.: Энергия, 1971.- с.272.

2.                Курносов А.И., Юдин В.В. Технология производства полупроводниковых приборов и интегральных микросхем.- М.: Высш. школа, 1979.- 367 с.

3.                Фролов А.Н., Шутов С.В., Самойлов Н.А. Оперативная оценка  концентрации примеси в эмиттере при проектировании дрейфовых  n-p-n транзисторов // Письма в ЖТФ,-1996г,-т.22, вып.7,- с. 36-38.

4.                Кремниевые планарные транзисторы./ Под ред. Я.А. Федотова.-М.: Сов. радио, 1973.- с.336.

5.                Фролов А.Н., Литвиненко В.Н., Калашников А.В., Бичевой В.Г., Салатенко А.В. Исследование коэффициента диффузии бора в кремнии от технологических режимов // Вестник ХГТУ, 1999г. - № 3(6). – с. 97-99.

6.                Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов.-2-е изд. перераб. и доп.- М.: Радио и связь, 1990.- с.264.

7.                Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ.- М.: Мир, 1989.- с.630.

8.                Фролов А.Н., Шутов С.В., Самойлов Н.А. Влияние профиля  легирования на пробивные напряжения коллекторного перехода в  планарных n-p-n транзисторах // Журнал технической физики,- 1998г.,-т.68, №10,- с.136-138.

9.                Интегральные схемы на МДП-приборах./ Пер. с англ. под ред. А.Н. Кармазинского.- М.: Мир, 1975

Дополнительная литература

10.           1. Зи С. Физика полупроводниковых приборов: В 2-х книгах. Перевод с англ.- М.: Мир, 1984.

11.           Березин А.С., Мочалкина О.Р. Технология и конструирование интегральных микросхем: Под ред. И.П. Степаненко.- М.: Радио и связь, 1983.- с.232.

12.           Конструирование и технология микросхем: Под ред. Л.А. Коледова,- М.: Высш. школа, 1984,- с.231.

13.            Пономарев М.Ф., Коноплев Б.Г. Конструирование и расчет микросхем и микропроцессоров.- М.: Радио и связь, 1986.- с.176.

 Ю. Пожела, В. Юценене. Физика сверхбыстродействующих транзисторов.- Вильнюс.: Мокслас, 1985.- с.112.





Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.