Меню
Поиск



рефераты скачать Магнетизм

Эрстед открыл, что если над проводником, направленным вдоль земного меридиана, поместить магнитную стрелку, которая показывает на север, и по проводнику пропустить электрический ток, то стрелка отклоняется на некоторый угол.

После того как Эрстед опубликовал свое открытие, многие физики занялись исследованием этого нового явления. Французские ученые Био и Савар постарались установить закон действия тока на магнитную стрелку, т. е. определить, как и от чего зависит сила, действующая на магнитную стрелку, когда она помещена около электрического тока. Они установили, что сила, действующая на магнитный полюс (на конец длинного магнита) со стороны прямолинейного проводника с током, направлена перпендикулярно к кратчайшему расстоянию от полюса до проводника и модуль ее обратно пропорционален этому расстоянию.

Познакомившись с работой Био и Савара, Лаплас заметил, что для расчета «магнитной» силы, т. е., говоря современным языком, напряженности магнитного поля, полезно рассматривать действие очень малых отрезков проводника с током на магнитный полюс. Из измерений Био и Савара следовало, что если ввести понятие элемента проводника ∆l, то сила ∆F, действующая со стороны этого элемента на полюс магнита, будет пропорциональна F ~ (∆l/r2)sinθ -, где l - элемент проводника, θ - угол, образованный этим элементом и прямой, проведенной из элемента l в точку, в которой определяется сила, а r - кратчайшее расстояние от магнитного полюса до линии, являющейся продолжением элемента проводника.


После того как было введено понятие силы тока и напряженности магнитного поля, этот закон стали записывать так:

где H - напряженность магнитного поля, I - сила тока, а k - коэффициент, зависящий от выбора единиц, в которых измеряются эти величины. В международной системе единиц СИ этот коэффициент равен 1/4π.

Новый важнейший шаг в исследовании электромагнетизма был сделан французским ученым Андре Мари Ампером (1775 - 1836) в 1820г.

Раздумывая над открытием Эрстеда, Ампер пришел к совершенно новым идеям. Он предположил, что магнитные явления вызываются взаимодействием электрических токов. Каждый магнит представляет собой систему замкнутых электрических токов, плоскости которых перпендикулярны оси магнита. Взаимодействие магнитов, их притяжение и отталкивание объясняются притяжением и отталкиванием, существующими между токами. 3емной магнетизм также обусловлен электрическими токами, которые протекают в земном шаре.

Эта гипотеза требовала, конечно, опытного подтверждения. И Ампер проделал целую серию опытов для ее обоснования.

Первые опыты Ампера заключались в обнаружении сил, действующих между проводниками, по которым течет электрический ток. Опыты показали, что два прямолинейных проводника с током, расположенные параллельно друг другу, притягиваются, если токи в них имеют одинаковое направление, и отталкиваются, если направление токов противоположно.

Ампер показал также, что виток с током и спиралевидный проводник с током (соленоид) ведут себя как магниты. Два таких проводника притягиваются и отталкиваются подобно двум магнитным стрелкам.

Свои первые сообщения о результатах опытов Ампер сделал на заседаниях Парижской академии наук осенью 1820 г. После этого он занялся разработкой теории взаимодействия проводников, по которым течет электрический ток.

Ампер решил в основу теории взаимодействия токов положить закон взаимодействия между элементами токов. Нужно отметить, что Ампер говорил уже не просто о взаимодействии элементов проводников, как Био и Савар, а о взаимодействии элементов токов, так как к тому времени уже возникло понятие силы тока. И это понятие ввел сам Ампер.

Следуя взглядам того времени о подобии элементарных сил силам тяготения, Ампер предположил, что сила взаимодействии между элементами двух токов будет зависеть от расстояния между ними и должна быть направлена по прямой, соединяющей эти два элемента.

Проведя большое число опытов по определению взаимодействия токов в проводниках различной формы и по-разному расположенных друг относительно друга, Ампер, в конце концов, определил искомую силу. Подобно силе тяготения она оказалась обратно пропорциональной квадрату расстоянии между элементами электрических токов. Но в отличие от силы тяготения ее значение зависело еще и от относительной ориентации элементов токов.

Формулу, которую получил Ампер, я приводить не буду. Она оказалась неверной, потому что он заранее предположил, что сила взаимодействия между элементами токов должна быть направлена по прямой, соединяющей эти элементы. На самом же деле эта сила направлена под углом к этой прямой.

Однако вследствие того, что Ампер проводил опыты с замкнутыми постоянными токами, он получал при расчетах по своей формуле правильные результаты. Оказывается, что для замкнутых проводников формула Ампера приводит к тем же результатам, что и исправленная впоследствии формула, выражающая силу взаимодействия между элементами токов, которая по-прежнему носит название закона Ампера.




















Магнитное поле в веществе (магнетики)

Все вещества при рассмотрении их магнитных свойств принято называть магнетиками, т.е. они способны под действием магнитного поля приобретать магнитный момент (намагничиваться).

По своим магнитным свойствам магнетики подразделяются на три основные группы:

диамагнетики;

парамагнетики;

ферромагнетики.

Количественной характеристикой намагниченного состояния вещества служит векторная величина – намагниченность J.Я рассмотрю каждую группу в отдельности.

Диамагнетики

         Диамагнетиками называются вещества, которые намагничиваются во внешнем магнитном поле в направлении, противоположном направлению вектора магнитной индукции поля (т.е. в нём внешнее магнитное поле незначительно ослабевает).

         К диамагнетикам относятся вещества, магнитные моменты атомов, молекул или ионов которых в отсутствие внешнего магнитного поля равны нулю. Диамагнетиками являются инертные газы, молекулярный водород и азот, цинк, медь, золото, висмут, парафин и многие другие органические и неорганические соединения.

В случае отсутствия магнитного поля диамагнетик немагнитен, поскольку в данном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома равен нулю.

Т.к. диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойственен всем веществам.

Следует отметить, что магнитная проницаемость у диамагнетиков µ<1. Вот, например, у золота µ=0,999961, у меди µ=0,9999897 и т.д.

Парамагнетики

         Парамагнетики – вещество, у которого вектор индукции собственного магнитного поля, сонаправленный с вектором магнитной индукции внешнего (намагничивающего) поля, меньше его по модулю (т.е. внешнее магнитное поле незначительно усиливается).

         У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнетиков всегда обладают магнитным моментом. Однако вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому парамагнитные вещества магнитными свойствами не обладают. При внесении парамагнетиков во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов).

         Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его.

         При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается.

Вот некоторые парамагнитные вещества:

Алюминий µ=1,000023;

Воздух µ=1,00000038.

Ферромагнетики

         Ферромагнетики – вещество, у которого вектор индукции собственного магнитного поля, сонаправленный с вектором магнитной индукции внешнего (намагничивающего) поля, значительно превышает его по модулю (внешнее магнитное поле значительно увеличивается).

      Ферромагнетики в отличие от слабомагнитных диа- и парамагнетиков являются сильномагнитными средами:   внутреннее магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле.

         Большой вклад в экспериментальное изучение свойств ферромагнетиков внес Столетов. В своей докторской диссертации он исследовал зависимость намагниченности мягкого железа от напряженности магнитного поля. Предложенный им способ заключался в измерении магнитного потока в ферромагнитных кольцах при помощи баллистического гальванометра.

         Ферромагнитные материалы в большой или меньшей степени обладают магнитной анизотропией, т.е. свойством намагничиваться с различной степенью трудности в различных направлениях.

Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри. При температурах выше точки Кюри ферромагнетик ведет себя во внешнем магнитном поле как парамагнитное вещество. Он не только теряет свои ферромагнитные свойства, но у него изменяется теплоемкость, электропроводимость и некоторые другие физические характеристики.

 Точка Кюри для различных материалов различна:

◊   для железа    +7700 С;

◊   для никеля    +3650 С;

◊   для кобальта  +11300 С.

При намагничивании ферромагнетиков происходит небольшое изменение их линейных размеров, т.е. увеличение или уменьшение их длины с одновременным уменьшением или увеличением поперечного сечения. Это явление называется магнитострикцией, оно зависит от строения кристаллической решетки ферромагнетика.

В чем же заключается природа ферромагнетизма?

 Согласно представлениям Вейсса (1865-1940), его описательной теории ферромагнетизма, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Однако это вносило некое противоречие, т.к. многие ферромагнитные материалы при температурах ниже точки Кюри не намагничены.

Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбивается на большое число малых микроскопических (порядка 10-3 – 10-2 см.) областей – доменов, самопроизвольно намагниченных до насыщения.

При отсутствии внешнего магнитного поля магнитные моменты отдельных атомов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю, т.е. ферромагнетик не намагничен.

Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, как в парамагнетике, а целых областей спонтанной намагниченности. Поэтому с ростом H намагниченность J (рисунок) и магнитная индукция B уже в слабых полях растет довольно быстро.

         Показанное на рис.1 намагничивание такого образца (ферромагнетик) в магнитном поле, напряженность H которого медленно увеличивается, происходит за счет двух процессов: смещения границ доменов и вращения магнитных моментов доменов.

Процесс смешения границ доменов приводит к росту размеров тех доменов, которые самопроизвольно намагничены в направлениях, близких к направлению вектора H.

Процесс вращения магнитных моментов доменов по направлению H играет основную роль только в области, близкой к насыщению (т.е. при H близких к Hs).

Существование доменов в ферромагнетиках доказано экспериментально. Прямым экспериментальным методом их наблюдения является метод порошковых фигур.

На тщательно отполированную поверхность ферромагнетика наносятся водная суспензия мелкого ферромагнитного порошка (магнетит). Частицы оседают преимущественно в местах максимальной неоднородности магнитного поля, т.е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов.

Дальнейшее развитие теории ферромагнетизма Френкелем и Гейзенбергом, а также ряд экспериментальных фактов позволили выяснить природу элементарных носителей ферромагнетизма.

В настоящий момент установлено, что магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами электронов. Установлено также, что ферромагнитными свойства могут обладать только кристаллические вещества, в атомах которых имеются недостроенные внутренние электронные оболочки с некомпенсированными спинами. В подобных кристаллах могут возникать силы, которые вынуждают спиновые магнитные моменты электронов ориентироваться параллельно друг другу, что и приводит к возникновению областей спонтанного намагничивания. Эти силы, называемые обменными, имеют квантовую природу – они обусловлены волновыми свойствами электронов.

         Магнитотвёрдые ферромагнетики – ферромагнетики, у которых остаточная намагниченность велика (т.е. при воздействии сильного магнитного поля они сами становятся магнитами). Например, сплав альника.

         Магнитомягкие ферромагнетики – ферромагнетики, концентрирующие в себе внешнее магнитное поле и, пока оно действует, ведут себя как магниты; но если внешнее поле исчезает, они не становятся магнитами.




Экспериментальные задания

1. «Наблюдение зависимости намагничивания железа от температуры»

Оборудование: магнит дугообразный, булавка или иголка, спиртовка или свечка.

         Расположим дугообразный магнит на край стола так, что бы его полюсы немного выступали за край крышки стола. К одному из полюсов приставим стальную булавку или иголку. Под Действием магнитного поля она намагничивается и расположится горизонтально между полюсами магнита. При поднесении пламени к иголке она начинает нагреваться и свободный конец опускается. При охлаждении булавки она занимает первоначальное положение.

         Пронаблюдав опыт, можно сделать вывод о том, что ферромагнетические свойства вещества зависят от температуры тела.

2. «Наблюдение действия магнитного поля на движущиеся заряды».

Оборудование: осциллограф, магниты.

         Осциллограф – прибор для демонстрации действия магнитного поля на движущие заряды. Он работает следующим образом: в основании стоит электроннолучевая трубка, которая «стреляет» электронами. Эти электроны с помощью регулировки концентрируются в одну точку на экране осциллографа. Поднося магнит к экрану можно заметить отклонение точки (т.е. сконцентрированных электронов). Поднося другой полюс магнита точка отклоняется в противоположенную сторону. Если увеличить силу магнитного поля в 2 раза, то заметим что, точка отклоняется в 2 раза дальше, чем прежде. Этот опыт ещё раз доказывает, что направление электронов зависит от магнитного поля, в котором эти электроны находятся. Это силу открыл Д. Ленц, и назвали силой Ленца (FЛ) (Правило левой руки).





Заключение

В заключение хочу сказать, что я выбрал данную тему для реферата из-за её актуальности и доказал это. Нет области прикладной деятельности человека, где бы ни применялись магниты. Особенно пользуются успехом у человечества генераторы переменного тока и ферромагнетики (это составляющие создания и распространения тока по всё квартирам).

Ферриты и изделия из них начиная с момента их изобретения нашли наиболее широкое применение в радиоэлектронике и вычислительной технике среди других магнитомягких материалов. Кроме того, что ферритовые изделия в большинстве случаев могут эффективно заменить изделия из других материалов, они обладают рядом уникальных физико-химических, магнитных и электрических свойств, не присущих ни одному другому материалу.

         Компас - самое простое изобретение, но в то же время самое нужное, особенно на тот момент великих географических открытий. СВЧ – печь и многое другое. А чтобы было, если бы не было всего этого…?















Библиография

1. Бабич Э.А. и др. Технология производства ферритовых изделий. М.: Высшая школа, 1978

2. Детлаф А.А., Яворский Б.М. "Курс общей физики". — М.: Высшая школа, 1989г.

3. Пасынков В.В., Сорокин В.С. Практическое использование магнитов, М.: Высшая школа, 1986

4. Трофимова Т.И. Курс физики". — М.: Высшая школа,1998г.







Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.