Меню
Поиск



рефераты скачать Компенсация реактивной мощности в системах электроснабжения с преобразовательными установками

Отклонение значений емкостей батарей конденсаторов и индуктивностей реакторов, входящих в состав фильтров, обусловливается целым рядом факторов, которые можно разделить на субъективные и объективные.

К субъективным причинам относятся отсутствие опыта проектирования, изготовления, монтажа и промышленной эксплуатации силовых фильтров, отсутствие научно обоснованных методик и аппаратуры настройки фильтров перед эксплуатацией и подстройки их в процессе эксплуатации.

К числу объективных факторов можно отнести изменение емкостей батарей конденсаторов и индуктивностей реакторов в зависимости от температуры нагрева, изменение индуктивных и емкостных сопротивлений фильтров при изменении частоты питающей сети, ступенчатое регулирование индуктивности реактора фильтра с помощью отпаек, последствия аварийных режимов в фильтрах[22].

Наиболее простым методом снижения несинусоидальности является выделение нелинейных нагрузок на отдельную секцию шин, подключенную к одной обмотке многообмоточного трансформатора или реактора. Допустимое значение коэффициента несинусоидальности на шинах с нелинейной нагрузкой определяется только условиями надежной работы автоматических систем управления и самих нагрузок. Возможно и противоположное решение: рассредоточение нелинейных нагрузок по различным узлам систем электроснабжения исходя из допустимого уровня несинусоидальности[12].

Следует отметить, что в настоящее время ведутся широкие исследования способов и средств уменьшения высших гармоник в электрических сетях. Известны предложения по применению усложненных законов управления вентильными преобразователями, при которых не только значительно снижается влияние преобразователей на форму кривой напряжения сети, но и одновременно уменьшается потребление ими реактивной мощности.

1.4 Компенсация реактивной мощности в системах электроснабжения преобразовательных установок


1.4.1 Технические трудности, возникающие при использовании конденсаторных батарей для компенсации реактивной мощности

Широкое использование вентильных преобразователей в промышленности приводит к необходимости решать вопросы уменьшения их воздействия на питающую сеть, и в первую очередь вопросы компенсации реактивной мощности.

Известно, что наиболее экономичным средством для компенсации реактивной мощности являются конденсаторные батареи. Это объясняется их преимуществами перед другими средствами компенсации реактивной мощности, а именно: возможность применения как на низком, так и на высоком напряжении; малые потери активной мощности (0,0025–0,005 кВт/квар); наименьшая удельная стоимость (за 1 квар) по сравнению с другими компенсирующими устройствами; простота эксплуатации (ввиду отсутствия вращающихся и трущихся частей); простота производства монтажа (малая масса, отсутствие фундамента); возможность использования для установки любого сухого помещения.

Но в сетях с повышенным содержанием высших гармоник, генерируемых нелинейными нагрузками, применение обычных средств компенсации реактивной мощности, рассчитанных на синусоидальные токи и напряжения, связано с техническими трудностями.

При необходимости компенсации нагрузок с быстроизменяющейся реактивной мощностью применяемое повсеместно регулирование мощности конденсаторной батареи путем подключения или отключения ее секций с помощью механических выключателей оказывается затруднительным, а часто и невозможным в связи с высокой стоимостью, малым быстродействием и низкой механической прочностью выключателей, а также ступенчатым характером регулирования мощности батареи. Возможно, кроме того, возникновение ударных коммутационных сверхтоков, зависящих от момента подключения батареи конденсаторов к питающей сети, а также неблагоприятное воздействие на конденсаторы токовых перегрузок при частоте высших гармоник, генерируемых нелинейными нагрузками.

Исследование процесса работы конденсаторных установок при наличии высших гармоник в питающей сети, особенно при работе вентильных преобразователей, представляет важное практическое значение для определения возможности применения конденсаторных батарей в системах электроснабжения промышленных предприятий.

Практика работы промышленных предприятий свидетельствует о том, что батареи конденсаторов, работающие при несинусоидальном напряжении, в ряде случаев быстро выходят из строя в результате вспучиваний и взрывов. Причиной разрушения конденсаторов является перегрузка их токами высших гармоник, которая возникает, как правило, из-за того, что конденсаторные батареи изменяют частотные характеристики систем и способствуют возникновению резонанса токов. При подключении батареи конденсаторов к шинам подстанции, питающей мощную вентильную нагрузку, какое бы ни было значение емкости батареи, всегда найдется такая группа гармоник, при которых конденсаторы вступают в режим резонанса токов (или близкий к нему) с индуктивностью сети.

Токи резонансной группы гармоник, генерируемые вентильным преобразователем в сеть, значительно уменьшаются, и можно говорить о том, что напряжения гармоник резонансной группы приложены к батарее конденсаторов непосредственно. В то же время емкостное сопротивление батареи конденсаторов уменьшается с увеличением номера гармоники. Это приводит к тому, что через БК протекают значительные токи резонирующих гармоник, соизмеримые, а иногда и значительно превосходящие ток первой гармоники. Перегрузки по току на конденсаторы допускают до 30%, по напряжению – до 10% от номинальных значений. На самом деле за счет появления резонансных явлений перегрузка по току может достигать 400–500%, т.к. токи резонансных частот могут значительно превышать ток первой гармоники. При выборе мощности и места установки конденсаторных батарей необходимо учитывать возможные резонансы тока и напряжения на одной из гармоник, генерируемых нелинейной нагрузкой.

Например, на одном из промышленных предприятий для компенсации реактивной мощности по проекту установлены конденсаторные батареи общей мощностью 11500 квар. Но ввести их в работу оказалось невозможным из-за наличия в цепи высших гармоник тока, которые появлялись при работе полупроводниковых выпрямительных агрегатов. Резкие толчки тока достигали 150–180 % номинального, что приводило к выходу из строя конденсаторов: за 5 ч работы вышло из строя 50 конденсаторных банок общей мощностью 1400 квар. Наблюдалось "ненормальное гудение" конденсаторных батарей, отключение масляных выключателей от максимальной защиты. В то же время без компенсации реактивной мощности нормальная работа установок невозможна, так как при этом коэффициент мощности составляет 0,57–0,6[22].

Работу батарей конденсаторов в условиях несинусоидального напряжения необходимо рассматривать с позиций взаимного влияния высших гармоник питающей сети и батарей конденсаторов.

Проведенные многочисленные экспериментальные исследования доказали, что в системах электроснабжения промышленных предприятий, имеющих мощные вентильные преобразователи, несинусоидальность напряжения, как правило, превышает нормируемые пределы, достигая в ряде случаев 20%. Поэтому на предприятиях с вентильной нагрузкой вопросы компенсации реактивной мощности до конца не решены.

Расчеты параметров схемы включения конденсаторной батареи с вентильным преобразователем с целью компенсации реактивной мощности показывают, что при этом общее действующее значение тока конденсаторной батареи во много раз превысит допустимое, что приведет к ее повреждению. Общий коэффициент несинусоидальности напряжения также резко увеличивается в точке присоединения конденсаторной батареи.

На рисунке 7 дана схема распределительной сети, питающей тиристорный преобразователь, в которой для компенсации реактивной мощности используется конденсаторная установка.


Рисунок 7 – Схма подключения конденсатора к преобразовательному трансформатору (а) и схема замещения (б)[1]


На рисунках 8–10 показаны напряжение питающей сети и токи батареи конденсаторов различной мощности, подключенных для компенсации реактивной мощности к вентильной нагрузке.


Рисунок 8 – Осциллограммы, полученные на физической модели (рис. 7): а – фазного напряжения в точке 1; б – тока в конденсаторной батарее (С = 1 мкФ)


В токе конденсаторной батареи І1 = 100 %, І7 = 50 %, І11 = 60 %, І13 = 50 %, І17= 60 %, І19 = 60 %, І29 = 60 %, І35 = 60 %, І37 = 140 %, І55 = 125 %, І59 = 160 %, І61 = = 140%, І71 = 125 % І1. Перегрузка конденсатора по току составляет 370 %, КНС = = 16 %.

Здесь же даны уровни отдельных гармоник тока, протекающих через конденсаторную батарею, и общая перегрузка конденсаторов токами высших гармоник.


Рисунок 9 – Осциллограммы, полученные на физической модели (рис.7): а – фазного напряжения в точке 1, КНС = 38 %;б – тока в конденсаторной батарее (С = 15 мкФ)


В токе конденсаторной батареи І1 = 100 %, І7 = 90 %, І11 = 250 %, І13 = 225 %, І17= 70 %, І19 = 80 % І1. Перегрузка конденсатора по току составляет 400 %.


Рисунок 10 – Осциллограммы, полученные на физической модели (рис.7): а – тока в конденсаторной батарее (С = 70 мкФ);б – фазного напряжения в точке 1, КНС = 44 %

В токе конденсаторной батареи І1 = 100 %, І5 = 160 %, І7 = 60 % І1. Перегрузка конденсатора по току составляет 200 %[22].

Таким образом, непосредственное применение батарей конденсаторов в целях компенсации реактивной мощности в сетях с вентильными нагрузками проблематично. В каждом конкретном случае необходим расчет токовой перегрузки батарей резонансной группой гармоник. В некоторых случаях такие расчеты необходимо производить до гармоник достаточно высокого порядка, особенно при малых емкостях конденсаторных батарей[6].

 

1.4.2 Особенности компенсации реактивной мощности в сетях со специфическими нагрузками

На основании указанного выше можно сделать вывод о том, что в сетях со специфическими нагрузками (к ним относят нелинейные, несимметричные и резкопеременные нагрузки) существуют определенные особенности компенсации реактивной мощности, которые заключаются в следующем:

1.                  Из-за низкого коэффициента мощности потребителей и резкопеременного характера нагрузки необходимо осуществлять компенсацию как постоянной, так и переменной составляющей реактивной мощности. Компенсация постоянной составляющей реактивной мощности необходима для улучшения cosj и для уменьшения отклонений напряжения в питающей сети. Компенсация переменной составляющей реактивной мощности преследует цель уменьшения колебания напряжения в питающей сети.

2.                  Из-за быстрых изменений потребляемой реактивной мощности необходимо применение быстродействующих компенсирующих устройств, способных изменять регулирующую реактивную мощность со скоростью, соответствующей скорости наброса и сброса потребляемой реактивной мощности. Необходимое быстродействие таких компенсирующих устройств можно ориентировочно определить как dQ/dt = 100–2000 Мвар/с.

3.                  Из-за неравномерного потребления реактивной мощности по фазам необходимо и пофазное управление компенсирующими устройствами.

4.                  Ограничивается применение батарей конденсаторов для компенсации постоянной составляющей реактивной мощности в сети с резкопеременной вентильной нагрузкой. Это обусловлено наличием в сети высших гармоник тока и напряжения при работе нелинейных нагрузок. Высшие гармоники приводят к значительным перегрузкам батарей конденсаторов по току[12].

Вообще говоря, положение, сложившееся в стране с компенсацией реактивной мощности в электрических сетях, в том числе и в сетях, питающих преобразовательную технику, остается весьма напряженным. Компенсированность наших электрических сетей в 2–3 раза ниже, чем в развитых странах мира. Следует заметить, что решение этой задачи не является простым. С одной стороны это связано с большой потребностью и острым дефицитом конденсаторных батарей, а с другой стороны – с тем, что в условиях преобразовательных подстанций традиционный способ компенсации путем непосредственного включения конденсаторов в сеть сопровождается массовым выходом их из строя из-за перегрузки токами высших гармоник при возникновении резонансных явлений.

Не лучше дело обстоит и с гармоническим воздействием преобразовательных подстанций на питающие сети. На подавляющем числе предприятий указанных выше производств коэффициенты несинусоидальности напряжений и токов существенно превышают требования ГОСТ.

Основными техническими средствами компенсации реактивной мощности и улучшения спектров токов и напряжений на преобразовательных подстанциях являются:

а) синхронные компенсаторы;

б) тиристорные компенсаторы реактивной мощности;

в) пассивные фильтрокомпенсирующие устройства;

г) активные фильтры;

д) параметрические источники тока;

е) выпрямительные агрегаты с повышенными энергетическими показателями.

Несмотря на применение на ряде предприятий синхронных компенсаторов, интерес к этому способу компенсации в условиях преобразовательной нагрузки заметно упал.

Наоборот, во всем мире проводятся исследования и разработка статических (в основном тиристорных) компенсаторов реактивной мощности. Зачастую на эти же устройства дополнительно возлагаются функции фильтрации высших гармоник и снижения степени несимметрии питающих напряжений.

Повышенное внимание в настоящее время уделяется также совершенствованию схемных решений, методам расчета и вопросам практического применения фильтрокомпенсирующих устройств.

Новым направлением повышения качества напряжения в электрических сетях является использование активных силовых фильтров. Такие фильтры могут быть построены на базе схем типа инвертор тока с импульсной модуляцией интервалов проводимости вентилей; управляемых с помощью высокочастотной импульсной модуляции индуктивностей и емкостей; обращенного инвертора напряжения и др. В результате могут быть реализованы фильтры с перестраиваемыми параметрами и адаптивные фильтры, при необходимости и соответствующей установленной мощности решающие и проблему компенсации реактивной мощности.

Существенную роль в решении указанной выше проблемы способны сыграть индуктивно-емкостные преобразователи, в частности, параметрические источники тока. При преобразовании потребляемой из питающей сети энергии переменного тока в энергию стабилизированного постоянного тока в условиях изменения напряжения на нагрузке в широких пределах, когда в обычных преобразователях наблюдаются набросы реактивной мощности и заметные искажения сетевого тока, параметрический источник тока резко снижает указанный отрицательный эффект[16].


1.4.3 Статические тиристорные компенсаторы реактивной мощности

При наличии быстрых и резкопеременных нагрузок становится перспективным применение статических компенсаторов реактивной мощности, обеспечивающих возможность безынерционного регулирования реактивной мощности. При этом улучшаются условия статической устойчивости энергосистемы в целом, что обеспечивает дополнительную экономию за счет повышения технико-экономических показателей работы электроустановок.

Статические компенсаторы реактивной мощности (СКРМ) являются перспективным средством рациональной компенсации реактивной мощности в силу присущих им положительных свойств, таких, как быстродействующее регулирование, подавление колебаний напряжения, симметрирование нагрузок, отсутствие вращающихся частей, плавность регулирования реактивной мощности, выдаваемой в сеть. Кроме того, эти устройства могут осуществлять плавное и оптимальное распределение напряжений, обеспечивая тем самым снижение их потерь в распределительных электросетях[9].

На рисунке 11 приведены основные варианты статических компенсирующих устройств. Они содержат фильтры высших гармоник и регулируемый дроссель в различных исполнениях.


Рисунок 11 – Схемы статических компенсирующих устройств[6]


В настоящее время известно большое количество вариантов схем, которые разделяют на три группы:

1)                 мостовые источники реактивной мощности с индуктивным накопителем на стороне постоянного тока (рис. 11,а);

2)                 реакторы насыщения с нелинейной вольт-амперной характеристикой (рис.11,б);

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.