Меню
Поиск



рефераты скачать Источник бесперебойного питания с двойным преобразованием

Перегрузочные способности ИБП являются одним из важных потребительских показателей, т.к. позволяют оптимально выбирать номинальную мощность ИБП при подключении нагрузок, обладающих большими пусковыми токами или при использовании ИБП в технологических процессах с кратковременными периодическими пиковыми нагрузками. В таблице №3 приведены характерные для современных ИБП малой и средней мощности перегрузочные показатели инвертора и режима Байпас.

3. Преобразователь DC/DC (ППН) в ИБП малой мощности обеспечивает повышение и стабилизацию напряжения аккумуляторной батареи (АБ) до уровня, необходимого для надежной работы инвертора в автономном режиме. Принципиальная схема ППН представляет собой двухтактный дифференциальный высокочастотный преобразователь на двух группах параллельно включенных силовых транзисторов и высокочастотном трансформаторе, мощность которого с учетом потерь в инверторе должна превышать выходную мощность ИБП. Транзисторы управляются сигналами (30 кГц) с микросхемы ШИМ контроллера типа UC3525, который в свою очередь получает сигналы разрешения работы с платы управления ИБП и сигнал о величине высоковольтного напряжения питания инвертора.


  Таблица 2.  Перегрузочные показатели ИБП

Производитель

Модель ИБП

Номинальная

мощность,

кВА

Инвертор

Байпас

Перегрузка,

%

Время

перегрузки, с

Перегрузка,

%

Время

перегрузки,

с

Invensys

PW9120

1 – 6

125

60

1000

0,02

150

10

PW9150

8 – 15

125

60

150

10

Liebert

GXT

6 – 10

130

10

н/д

н/д

200

0,16

Nfinity

4 – 16

125

600

150

20

200

0,25

Hinet

10 – 30

125

600

150

1800

150

10

1000

0.1

300

0,1

Riello

MDM

10 –20

125

600

н/д

н/д

150

60

Энергетические

технологии

ДПК

1 – 3

110

30

н/д

н/д

130

10

150

0,2

6 – 10

130

600

150

60


К дифференциальной выходной обмотке высокочастотного трансформатора подключены две группы диодов, обеспечивающие выпрямление и формирование на конденсаторах С1, С2 (рис. 6) высоковольтного напряжения постоянного тока +350, –350 В относительно общей шины для питания инвертора в автономном режиме работы ИБП.

4. Зарядное устройство (ЗУ) обеспечивает заряд АБ при работе ИБП в сетевом режиме. В качестве АБ используются последовательно включенные герметичные (необслуживаемые) свинцово–кислотные аккумуляторы. Максимальное выходное напряжение ЗУ устанавливается из условия 2, 3 В/ячейка. ЗУ в ИБП малой мощности получает питание непосредственно от сети через собственный выпрямительный мост и сглаживающую емкость. Кроме заряда батареи, ЗУ обеспечивает питание ВИП в сетевом режиме и питание обмотки управления реле К1 (рис. 6). Принципиальная схема ЗУ выполняется на однотактном высокочастотном преобразователе (30 кГц), содержащим силовой транзистор и высокочастотный трансформатор. Управление силовым транзистором осуществляется сигналом с микросхемы ШИМ контроллера типа UC3845.

В ИБП средней мощности основное зарядное устройство (ЗУ) подключено к шине стабильного высоковольтного напряжения постоянного тока и выполнено по схеме DC/DC преобразователя (рис. 5). ЗУ выполняется по схеме двухтактного дифференциального высокочастотного преобразователя с частотой коммутации силовых транзисторов 20–30 кГц. Использование стабильного высоковольтного напряжения 700–800 В с выходных шин ККМ позволяет получить высокий к.п.д. ЗУ. В ИБП мощностью 6 – 10 кВА такое зарядное устройство обеспечивает зарядный ток 3–4 А при номинальном напряжении АБ 240 В. При наличие дополнительной внешней аккумуляторной батареи (АБ) используется дополнительное зарядное устройство (ДЗУ), выполняемое по схеме AC/DC преобразователя и подключенное к сети.

5. Блок коммутации (Байпас) автоматически обеспечивает цепь подключения нагрузки непосредственно к сети при аномальных режимах работы ИБП (перегрузке, перегреве, выходе из строя одного из узлов ИБП). Двухпозиционное реле К2 в ИБП малой мощности (рис. 4) срабатывает от сигнала с платы управления и обеспечивает переключение выхода ИБП с инвертора на сеть (режим Байпас) и наоборот. Контакты входного реле К1 блока коммутации замыкаются при наличие напряжения с блока ЗУ при подключении ИБП к сети и сигнала разрешения от платы управления, который возникает, если подтверждается, что входное напряжение и другие системные параметры ИБП находятся в норме.

В ИБП средней мощности блок коммутации выполняется на тиристорах, осуществляющих по сигналу с платы управления переключение нагрузки с выхода инвертора на сеть и наоборот.

6. Вторичный источник питания (ВИП) формирует ряд низковольтных напряжений постоянного тока (5, 12, 15, 24 В) для обеспечения питанием различных цепей систем управления блоков силовой платы, питание платы управления и вентиляторов. Питание блока ВИП осуществляется от ЗУ при сетевом режиме или от батареи при автономном режиме.

Принципиальная схема ВИП выполняется на однотактном высокочастотном преобразователе. Выход из строя ВИП приводит к общей неисправности ИБП и переключение нагрузки на Байпас.

 

2.1 Системные показатели ИБП


В таблице №4 отражен ряд системных показателей ИБП малой мощности со средним временем резерва 6–8 мин. при 100% нагрузке за счет встроенных аккумуляторных батарей. Здесь приведены габариты корпусов ИБП, удельные мощности и энергетические показатели.

Удельная мощность определялась с учетом выходного коэффициента мощности Kpвых, номинальной выходной мощности Sвых и объема корпуса V:


(3)


Энергетический коэффициент, определяющий соотношение потребляемой полной мощности из сети и мощности, отдаваемой в нагрузку, находится по выражению:


Kэ = η´Kpвых


где: η – К.П.Д. ИБП, Kpвых – входной коэффициент мощности ИБП.


Системные показатели ИБП малой мощности

Производитель

Модель

ИБП

Мощность,

кВА

Габариты,

мм

Удельная

мощность, Вт/дм3

Энергетический

коэффициент

Сhloride

 Active

1

145´405´225

52,5

н/д

3

200´405´350

74

Invensys

 PW9120

1

 155´410´240

46

0,85

3

 215´470´365

57

Liebert

 GXT–2U

1

 89´546´432

34

0,85

3

89´615´432

89

Энергетические

технологии

ДПК

1

145´390´220

57

0,82

3

200´450´340

69

0,85


Как следует из сравнения структурного построения и технических характеристик ИБП малой и средней мощности разных производителей, они во многом схожи и представляют собой ИБП с неуправляемым выпрямителем, встроенным активным корректором мощности и полумостовым бестрансформаторным инвертором. Такие ИБП обладают высоким энергетическим коэффициентом по сравнению со структурами ИБП предыдущего поколения, основанных на управляемых тиристорных выпрямителях и мостовых инверторах, энергетический коэффициент которых не превышает 0,7. За счет применения в своей структуре ККМ современные ИБП имеют также низкий коэффициент искажения синусоидальности входного тока, что обеспечивает хорошую электромагнитную совместимость ИБП с другими нагрузками, подключенными к общей сети. Совокупность указанных свойств определяет использование ИБП для обеспечения качественной бесперебойной электроэнергией критичных нагрузок.

Выбор пользователем рассмотренных моделей ИБП должен определяться, в первую очередь, показателем цена/качество и надежным сервисным обслуживанием.


3. Примеры современных ИБП


Liebert NX (10–1200 кВА)

Система электропитания с двойным преобразованием напряжения, обеспечивает исключительное качество и надежность питания цепей нагрузки, превосходит аналоги по параметрам, надежности и окупаемости капиталовложений.


Liebert NX

источник бесперебойный питание энергия

Характеристики модели:

Система Liebert NX – ИБП нового поколения с двойным преобразованием и цифровым управлением, работающая в режиме "True On–Line". Имеет нулевое время переключения в режим работы от батарей, обеспечивают 100% защиту и максимально гарантированное выходное электропитание.

ИБП серии Liebert NX обеспечивают оптимальное сочетание:

·                   надежности

·                   удобства эксплуатации

·                   соответствие современным требованиям

·                   относительно невысокую стоимость в самом широком диапазоне применений

Устанавливаются в виде одиночного модуля или параллельной системы '1+N' с возможностью расширения до 6 модулей.

Преимущества:

·                   Максимальная защита и надежность

·                   Сокращение капитальных затрат и расходов на электроэнергию

·                   Широкий диапазон типов нагрузок

·                   Низкий уровень помех

·                   Масштабируемость по мощности

·                   Работа в самых сложных условиях эксплуатации

·                   Адаптация к специфическим требованиям Возможность работы с двумя независимыми источниками входного напряжения

Максимальная защита и надежность обусловлены:

Оснащением двумя идентичными и полностью резервированными платами блоков электропитания схем управления. Каждый из них запитан по входу от источников постоянного и переменного напряжения. Даже в случае отсутствия напряжения от одного из этих источников или отказа одного из блоков питания система Liebert NX может продолжать нормально функционировать. Эта особенность значительно повышает надежность системы.

Высокоэффективной системой охлаждения наиболее ответственных компонентов и избыточными вентиляторами (опция)

Более широким диапазоном входного напряжения и частоты (От 305В до 477 В; от 40 Гц до 72 Гц)

Цифровое управление обеспечивает высокое быстродействие, надежность и точность регулирования при снижении стоимости компонентов.

Работа в конфигурации "двойная шина синхронизации нагрузки" способствует дальнейшему повышению надежности электропитания.

Высокая перегрузочная способность

110 % в течение 1 часа,

125 % – в течение 10 минут

150 % – в течение 1 минуты.

Liebert Hinet (10–30 кBA)

Масштабируемый ИБП с двойным преобразованием напряжения для питания 1–но или 3–х фазной нагрузки, с генерацией собственного стабилизированного синусоидального напряжения.


Liebert Hinet


ИБП Hinet фирмы Liebert предназначен для обеспечения нагрузки стабилизированным питанием в всем диапазоне номинальных нагрузок и при любом состоянии питания на входе. Сконструирован в стальной раме со съемными панелями.

ИБП Hinet работает по принципу действительной "он–лайн" технологии с двойным преобразованием. Питание, обеспечиваемое ИБП свободно от любых колебаний напряжения и частоты или отклонений на входе, или отклонений, вызванных шумами. ИБП также генерирует собственное стабилизированное синусоидальное напряжение для питания критичных систем.

Имеет встроенный байпас, который используется в качестве альтернативного способа питания нагрузки в случае перегрузки или выхода ИБП из строя. Дополнительный внутренний ручной байпас, используется при проведении работ по профилактическому техническому обслуживанию или тестированию ИБП без прекращения подачи питания к нагрузке.

Преимущества:

Действительно "он–лайн" конструкция с двойным преобразованием напряжения

Трехфазный вход, 1–но или 3–х фазный выход

Масштабируемая номинальная мощность (только для моделей с 3–х фазным выходом)

Поддерживает нагрузку с пик–фактором 3:1 без ухудшения характеристик

Изолирующие трансформаторы и фильтры гармонических искажений

Статический байпас и байпас для проведения технического обслуживания

Масштабируемые внутренние и внешние батареи

Режим экономии энергии

Низкий уровень акустического шума

Компактность

Улучшенный мониторинг и управление.

Liebert UPStation GXT2 (700 BA – 6000 BA)

ИБП c двойным преобразованием напряжения для цепей питания критичного оборудования, универсальной конструкцией напольного и стоечного 19" исполнения (2U вертикали), подключением неограниченного числа внешних батарей.

Liebert UPStation GXT2


UPStation GXT2 – надежный, высокоэффективный "on–line" источник бесперебойного питания (ИБП) с двойным преобразованием входного напряжения, внутренними батареями, размещаемыми в одном компактном корпусе – небольшой шкаф высотой 2U. Характеризуется легкостью обслуживания, имея батареи, которые пользователь может заменить самостоятельно

UPStation GXT2 обладает всеми функциями для защиты от провалов, выбросов, всплесков, перебоев, сильного понижения напряжения, а так же шумов, колебаний частоты и искажений формы волны. Обеспечивает коррекцию коэффициента мощности, преобразование частоты, имеет внутренние батареи с возможностью подключения неограниченного числа внешних батарей и ручной байпас.

Питание чувствительного к помехам электронного оборудования производится переменным током идеальной синусоидальной формы.

Преимущества:

Технология on–line с двойным преобразованием

Работа в стойке или в конфигурации "tower"

Высота всего 2U ( мощностью до 3000 ВА, включая батарею);

Возможность значительного увеличения времени автономной работы от батареи за счет внешних батарейных шкафов 2U "Plug and Play";

Совместимость с программным обеспечением Multilink фирмы Liebert (входит в комплект вместе с кабелем);

Совместимость с Intellislot SNMP WEB картой;

Возможность конфигурирования пользователем выходных параметров и сигналов тревоги;

Возможность быстрой замены батарей;

Широкий диапазон входного напряжения до 115 В в зависимости от нагрузки;

Привлекательный внешний вид


Заключение


ИБП с двойным преобразованием преобразуют поступающее на вход переменное напряжение в постоянное, а затем постоянное напряжение снова преобразуют в переменное. Такое двойное преобразование позволяет практически полностью оградить нагрузку от любых неполадок и искажений во внешней сети. Как и в двух других типах UPS, аккумуляторная батарея включается в работу тоже только в аварийном режиме, но она постоянно подключена ко входу инвертора, в результате обеспечивается практически нулевое время переключения.

К положительным свойствам ИБП с двойным преобразованием следует отнести следующие.

·                   Хорошая защита от шумов и наносекундных импульсов.

·                   Очень хорошая защита от искажений формы кривой напряжения и микросекундных импульсов.

·                   Возможность работы в сетях с нестабильной частотой.

·                   Самая лучшая плавная стабилизация напряжения с высокой точностью.

·                   Возможность наращивания батареи практически для всех моделей ИБП.

Как и для других ИБП, недостатки ИБП с двойным преобразованием вытекают из особенностей силовой схемы ИБП (и, к сожалению, вряд ли могут быть отделены от преимуществ). Более высокая цена, по сравнению с другими типами ИБП (кроме феррорезонансного). Повышенное тепловыделение, по сравнению с другими типами ИБП (кроме феррорезонансного).


Список использованной литературы


1.                 Источники вторичного электропитания / В.А. Головацкий, Г.Н. Гулькович, Ю.И. Конев и др.; Под ред. Ю.И. Конева –М.: Радио и связь, 2000. –420 с.

2.                 Источники электропитания радиоэлектронной аппаратуры: Справочник / Г.С. Найвельт, К.Б. Мазель, Ч.И. Хусаинов и др.; Под ред. Г.С. Найвельта. –М.: Радио и связь, 2005. –576 с.

3.                 Костиков В.Г., Никитин И.Е. Источники электропитания высокого напряжения РЭА. –М.: Радио и связь, 2006. –200 с.

4.                 Костиков В.Г., Парфенов Е.М., Шахнов В.А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для вузов. – 2–е изд. –М.: Горячая линия – Телеком, 2001. – 344 с.

5.                 Функциональные устройства систем электропитания наземной РЭА / В.В. Авдеев, В.Т. Костиков, А.М. Новожилов, В.И. Чистяков; Под ред. В.Г. Костикова. –М.: Радио и связь, 2000. –192 с.

6.                 http://at–systems.ru/quest/ups–quest/ups–quest.shtml

7.                 http://www.m–volt.ru/support/articles/article9.html

8.                 http://www.ask–r.ru/info/library/ups_without_secret_1.htm

Размещено на


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.