Меню
Поиск



рефераты скачать История иследования полупроводников

Область применения полупроводников не ограничивалась радиотехникой. Еще в 1932 г. А.Ф. Иоффе создал из закиси меди, а затем из селена фотоэлементы, вырабатывавшие при их освещении электрический ток без помощи внешних источников энергии. Однако их КПД при использовании солнечной энергии не превышал 0,05–0,1%. Но уже перед Великой Отечественной войной в СССР были созданы фотоэлементы из сернистого таллия и сернистого серебра с КПД до 1%.

В 1954 г. был создан кремниевый фотоэлемент. В этом же году впервые была построена солнечная батарея, состоявшая из большого числа кремниевых фотоэлементов. В начале 1955 г. были созданы фотоэлементы с КПД до 6%. Современные фотоэлементы имеют КПД до 20% и выше.
Располагая полупроводниковый диод рядом с радиоактивным материалом, получают атомную батарею, которая может вырабатывать электрическую энергию на протяжении многих лет.

На основе полупроводников были созданы фотодиоды. В сочетании с электрическими счетчиками они ведут учет движущихся объектов – от производимых деталей до пассажиров в метро. Приборы, созданные с применением фотодиодов, могут определять бракованные изделия на конвейере и выключать оборудование, если в его опасную зону попадают руки рабочих.

Создание приборов на основе полупроводников произвело в середине XX в. техническую революцию. Дальнейшее их развитие привело к созданию интегральных микросхем, появлению новых поколений электронно-вычислительных машин и персональных компьютеров. Сейчас ни одна область науки и техники не обходится без их применения.


9. Физика полупроводников и нанотехнологии


Уважаемые коллеги! В последнее время у нас в стране и во всем мире очень большое внимание уделяется вопросам нанотехнологии, наноструктур, нанофизики, нанохимиии и даже, как говорят, нанонауки. Я думаю, что все работы, которые ведутся в области наноструктур, а также развитие этих исследований связаны, прежде всего, с тем, что переход к очень малым размерам способствует возникновению целого ряда совершенно новых физических явлений, которые, в свою очередь, влекут за собой очень важные физические и технологические изменения. В физике полупроводников этот процесс, возможно, начался даже раньше, чем в других областях.

Можно сказать, что развитие полупроводниковой электроники на основе кремниевых интегральных схем с физической точки зрения, – это, по сути, то же, что было сделано в конце 40-х – начале 50-х гг.: поскольку основой является полевой и биполярный транзистор, и все главные физические явления – это те, что были изучены и исследованы уже тогда. Вместе с тем, произошли гигантские, драматические изменения, и связаны они с уменьшением размеров, а также с выполняющимся до сих пор законом Мура. Тем не менее, технология и техника литографии подошла сегодня к главному топологическому размеру интегральных схем, исчисляемому 45–60 нанометрами. Поэтому уже много лет говорится о том, что наступят принципиальные изменения, когда дальнейшее уменьшение топологического размера станет невозможным.

Но на самом деле процесс по-прежнему идет. Но я хотел бы остановиться на другом чрезвычайно важном направлении в развитии современной полупроводниковой электроники и физики. Это направление, связанное с использованием полупроводниковых гетероструктур, которые, кстати сказать, сегодня очень активно используются и в решении проблем кремниевых интегральных схем ультрамалых размеров, особенно что касается решения принципиальной проблемы мест соединений. В области физики полупроводниковых гетероструктур нанотехнология и основные физические явления, связанные с появлением малых размеров, а также принципиально новых свойств, были открыты более трех десятков лет назад.

Один из наших коллег, замечательный японский физик Лио Исаки внес в развитие этой области физики огромный конкретный вклад. Стоит заметить, что так называемые полупроводниковые сверхрешетки впервые были предложены в 62 г. (первая публикация в этой области принадлежит Л.В. Келдышу: к сожалению, он представил практически неэффективный способ получения сверхрешеток путем приложения сильных ультразвуковых полей к поверхности кристаллов). В 70 г. Лио Исаки создавал первые полупроводниковые решетки, используя уже полупроводниковые гетероструктуры. Японский ученый дал, с моей точки зрения, блестящее определение, которое, я думаю, чрезвычайно четко отражает сущность использования нанотехнологии, наноструктур в целом: он сказал о полупроводниковых гетероструктурах, что это «man made crystals», в отличие от «God made crystals».То есть это кристаллы, сделанные человеком, в отличие от кристаллов, сделанных Богом, ибо любые искусственные кристаллы, получаемые в лаборатории, – это, в конечном счете, и германий, и кремний, и полупроводниковые соединения А3Б5, А2Б6, и многие другие. Это кристаллы, сделанные Богом, потому что независимо от того, получены ли они в лаборатории, получены ли они в природе, – их свойства определены.

Что касается полупроводниковых гетероструктур: когда вы, в том числе и на очень малых размерах, меняете химические свойства, состав, а также принципиально меняете массу свойств, включая и энергетический спектр электронов, вы создаете материалы, которых в природе не существует, которые Бог – по тем или иным причинам – не догадался создать. И в этих кристаллах, в этих материалах вы принципиально получаете совершенно новые свойства. Это стало, вообще говоря, реальностью уже в самом конце 70-х и даже в конце 60-х гг., когда были получены первые идеальные гетероструктуры арсенид галлия и арсенид алюминия в нашей лаборатории – и это направление стало бурно развиваться.

Но потом, я думаю, произошла чрезвычайно важная вещь: когда мы в этих размерах при исследованиях полупроводниковых гетероструктур подошли к размерам, сравнимым с длиной волны электрона, тогда появилась масса новых свойств. Квантово-размерные явления стали определять свойства этих, сделанных человеком, кристаллов. И стало возможным существование тех кристаллов, которые получили название «квантовые ямы», «квантовые проволоки», а в последние десятилетия – «квантовые точки». Возникла новая физика низкоразмерных электронных систем, включая квантовые точки нуль-размерных электронных систем.

Я хотел бы подчеркнуть, что практически все достижения физики полупроводников, которые имеют отношение к развитию наноструктур ультрамалых размеров, связаны, прежде всего, с развитием технологии. Я думаю, что это чрезвычайно важно для всего понимания развития микроэлектроники, электронных технологий, информационных технологий в целом во второй половине XX в. Развитие физических исследований стало возможным по-настоящему только после того, как технология получения полупроводниковых кристаллов и материалов вышла на совершенно другой уровень.

Поскольку я вырос в Физико-техническом институте им. А.И. Иоффе, где проведение систематических полупроводниковых исследований было начато в конце 20-х – начале 30-х гг., я прекрасно знаю, как в самом начале 50-х гг. относились к нам, «полупроводниковцам», физики-ядерщики, представители других направлений. Я помню, как Анатолий Петрович Александров, когда он просил меня сделать полупроводниковое устройство для первой советской атомной лодки, говорил: «Жорес, а они работать-то будут?» Ведь считалось, что это полупроводниковая «кухня» и один образец может сильно отличаться от другого.

Ситуация кардинально изменилась после открытия транзисторов и развития германиевой и кремниевой технологии. И уже совершенно иной она была тогда, когда мы развивали исследования в области физики полупроводниковых гетероструктур. Практически все, в том числе и крупнейшие физические достижения, связаны с развитием технологии.

Если говорить о развитии нанотехнологии в этой области, то она связана, прежде всего, с разработкой трех методов эпитаксиального выращивания полупроводниковых структур. Это первый, сравнительно дешевый способ, с помощью которого удалось достичь основных принципиальных результатов, в том числе получить наноструктуры с размерами слоев, исчисляемых единицами нанометров. Это технология так называемой жидкостной эпитаксии, кристаллизации полупроводниковых структур из растворов расплавов. Химический состав растворов расплавов задается очень просто, а процесс кристаллизации является по-настоящему деликатным процессом, в котором при очень точной регулировке температур, с использованием, в том числе, и неравновесных термодинамических процессов, удавалось получать структуры с такими размерами слоев.

Но конечно, будущее связано с двумя технологическими методами. Во-первых, метода молекулярной эпитаксии, в развитие которого много было вложено и Новосибирским институтом физики полупроводников. И этот институт по сей день является одним из мощных центров развития этой технологии, признанных в мире, а также технологии, ставшей основой промышленного производства очень многих приборов, систем, массового производства светодиодов (скажем, масштабы светодиодов сегодня, в том числе и для освещения, определяются уже размерами продаж, приближающимися к 10 млрд долларов). Мощная ветвь полупроводниковой индустрии, которая будет расти все дальше и дальше и сыграет, по оценкам экспертов, к 2030 г. важную роль в смене примерно 50% освещения на лампах на светодиодах, на наноструктурах, на наногетероструктурах и сэкономит примерно 10% электроэнергии в мире. Основа этого – солнечные батареи на гетероструктурах; и уже подсчитано, что к 2030 г. суммарная мощность наземных электрических станций составит около 200 гигаватт, что заметно превышает суммарную мощность электростанций России на сегодняшний день. И здесь существенную роль играет опять же технология мосгидридной эпитаксии, и этот метод стал основой индустриального производства очень многих материалов.

Я бы хотел подчеркнуть, что наряду с развитием реальной нанотехнологии и крупномасштабным производством только на основе полупроводниковых гетероструктур, объемы продаж всех материалов сегодня составляют десятки миллиардов долларов, а влияние этой технологии в целом на развитие микроэлектроники и электронных технологий можно назвать гигантским.

Отмечу еще и следующую вещь: ценность этих направлений заключается, прежде всего, в новых физических явлениях. К примеру, такая вещь, как низкоразмерные электронные системы, стали массовыми и в промышленном производстве, и в физических исследованиях. И если, скажем, в начале 70-х гг. наши доклады на международных конференциях были единичными, то сегодня две трети (даже три четверти) докладов на полупроводниковых физических конференциях – это доклады, посвященные наногетероструктурам, физике электронных систем с низкоразмерным электронным газом. И среди новых физических явлений, которыми физика обогатилась за эти десятилетия, я бы в первую очередь назвал одно из уникальных открытий второй половины XX в. Это открытие дробного квантового холл-эффекта, сделанное Штормером и Цуи и теоретически объясненное Лохлином, ставшее возможным только благодаря наногетероструктурам, «квантовым ямам» высокого совершенства, в которых электронный газ можно было получить с уникально высокими подвижностями. Открытие этого явления при низких температурах в сверхсильных магнитных полях привело к тому, что объяснить его оказалось возможным, только предположив, что у квантовой жидкости существуют свойства, которые не существуют для отдельно взятых частиц.

Председатель комитета по физике, который представлял эту работу, отмеченную Нобелевской премией в 98 г., подчеркнул, что в ней не соблюдается правило Ландау. Дело в том, что один из принципов Ландау таков: если вы знаете свойства частиц, то на основании знания этих свойств вы можете описать и свойства ансамбля. Председатель комитета по физике сформулировал этот принцип так: 1+1=2. Но иногда это простое арифметическое правило не выполняется. В физике это, как правило, ведет к Нобелевским премиям. Это случилось и с дробным квантовым холл-эффектом, потому что оказалось, что свойства квантовой жидкости можно объяснить, только предположив, что дробные квантовые заряды у частиц, у электронов, которых реально у каждого электрона нет, есть у ансамбля (Лохлин 4 года назад говорил об этом в своей лекции под названием «Конец редукционизма», которую он читал у нас в Петербурге). И это явление, с моей точки зрения, знаковое: дробный квантовый холл-эффект, открытый в 82 г., и последовавшие за ним исследования показывают, что на самом деле и сегодня в нашей физике есть явление, которое мы не можем объяснить. Это следующий шаг и очень яркая демонстрация физики наноструктур. Вместе с тем, это яркая демонстрация успехов нанотехнологии.

Я хорошо знаю Штормера, и Цуи, и Лохлина и помню, как Штормер всегда гордился не только тем, что он открыл дробный квантовый холл-эффект, но и тем, что он является автором так называемого модуляционного лигирования гетероструктур, которое позволило получать квантовые наногетероструктуры с очень высокой подвижностью. И это пример развития нанотехнологии, которая привела к драматическим, очень ярким новым физическим явлениям и оказалась возможной только благодаря развитию физики и технологии гетероструктур «men make crystals».

Сегодня мы очень многого ждем от нанотехнологии, очень много говорим об этом (в частности, в послании президента Федеральному собранию говорилось об этом). На самом деле уже с конца 90-х гг. лозунг «Нанотехнологии» в США и в ряде других стран стал использоваться для того, чтобы получать большие средства от правительств и государств. И я думаю, чрезвычайно важно те средства, которые будут выделяться у нас, использовать для развития научных исследований технологии, диагностики в целом. И очень важно при этом понимать, что конкретные новые явления мы часто не можем предсказать, поэтому нужно предоставить очень многим лабораториям страны возможность работать с совершенными системами молекулярной мосгидридной эпитаксии, а также использовать самые современные диагностические средства – тогда, я думаю, у нас, безусловно, появится масса новых результатов; и в этом, с моей точки зрения, огромную роль играет международное научное сотрудничество.

У нас в России и в Советском Союзе подобные традиции существовали всегда. На мой взгляд, такое положение дел будет сохраняться и дальше, и в этой области нас ждут ценные неожиданные открытия. Вы понимаете, что в очень коротком пятнадцатиминутном выступлении я не могу рассказывать детально об одной из самых интересных областей физики и технологии полупроводников, которой я лично занимаюсь с 62 г. (уже 45 лет). Хотел бы подчеркнуть в сегодняшнем докладе, посвященном 50-летию одного из самых замечательных научных центров мира – Сибирского отделения Российской академии наук, – что исследования физики полупроводниковых гетероструктур мы ведем совместно начиная с 64 г. Поэтому этот центр нужно очень высоко ценить.

Я боюсь, что у меня не будет возможности так долго говорить о юбилее Сибирского отделения… Я очень рад быть здесь уже второй раз в этом году и хотел бы сказать, что Сибирское отделение, юбилей которого мы отмечаем, в мировом рейтинге научных организаций стоит на первом месте среди всех научных организаций России и обгоняет всю Российскую академию наук на 40 номеров! Поздравляю Сибирское отделение! (Аплодисменты.)




Заключение


Нобелевский лауреат Ж. Алферов отметил, что в XX веке состоялось три основных открытия: искусственное деление урана, транзисторы, лазеры. Среди наиболее значимым для человечества является появление транзистора на полупроводниках и последовавшее за этим создание и развитие микро- и оптоэлектроники – основы современной техники связи и информатики.

Физика полупроводников развивалась на протяжении XIX–XX веков полупроводниковые диоды пришли на смену вакуумным лампам, были изобретены на основе полупроводников фотодиоды, фотоэлементы, интегральные микросхемы, а следовательно это привело к развитию ЭВМ и ПК.

На протяжении двух столетий такие учение как Дэви, Беккерей, Пирс, Столетов, Иоффе, Бардин, Браттейн, Шокли, Алферов внесли огромный вклад в развитие физике полупроводников.

На данный момент решаются проблемы физики полупроводников гетроструктуры в полупроводниках, квантовые ямы и точки, заряды, спиновые волны, мезоскопия.




Список литературы


1. Калашников С.Г. Электричество: Учебн. Пособие. – 6-е изд., стереот. - М.: ФИЗМАЛИТ, 2004

2. В.И. Фистуль. Введение в физику полупроводников. М. Высшая школа, 1984.

3. Дорфман Я.Г. Всемирная история физики с начала 19 века до середины 20 века. – М.: Наука, 1979

4. Сонин А.С. Введение в сегнетоэлектричество. - М.: Наука, 1970

5. http://myrt.ru/history/print:page, 1,981 – poluprovodniki.html

6. http://gete.ru/post_1172774080.html

7. Виноградов Ю.В. «Основы электронной и полупроводниковой техники». Изд. 2-е, доп. М., «Энергия», 1972 г. – 536 с.


Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.