Исследование процессов испарения и конденсации жидких капель
Содержание:
1.
Введение
1.1.
Предисловие
1.2.
Экологический
аспект проблемы
1.3.
О
дисперсных системах
1.4.
Атмосферные
аэрозоли
1.5.
Классификация
и размер аэрозолей
1.6.
Основная
характеристика частиц дисперсной фазы – функция распределения частиц по
размерам
1.6.1.
Обратно-степенное
распределение
1.6.2.
Гамма
распределение
1.6.3.
Логарифмически-нормальное
распределение
2.
Состояние
проблемы и постановка задачи
2.1.
Газокинетические
процессы в дисперсной системе
2.1.1.
Непрерывная
и дискретная динамика.
2.1.2.
Непрерывный
режим.
2.1.3.
Свободно
- молекулярный (кинетический) режим.
2.1.4.
Переходный
режим
2.2.
Подведение
итогов
2.3.
Постановка
задачи
3.
Решение
задачи и результаты исследования
3.1.
Линеаризованное
уравнение Больцмана для сферической
геометрии в
односкоростном приближении.
3.2.
Основные
уравнения
3.3.
Формальное
решение уравнения для функции распределения
3.4.
Точные
результаты решения уравнений
3.5.
Пограничный
слой
3.6.
Приближение
скачка концентрации на поверхности частицы
3.7.
Численные
результаты
4.
Выводы и
заключение
5.
Список
литературы
1.
Введение
1.1 Предисловие
Испарение и
конденсация частиц представляют собой наиболее существенный фактор, изменяющий
спектр размеров аэродисперсной системы. В особенности это касается жидких
частиц. Это проблема очень актуальна как в различных технологических
приложениях, так и в окружающей нас природе. Достаточно сказать, что круговорот
воды в природе происходит через фазы испарения и объемной конденсации.
Дисперсный состав аэрозольных частиц при испарении оказывается определяющей
характеристикой системы в целом. Именно распределение по размерам ответственно
за радиационный баланс солнечного излучения, достигающего поверхности земли и
определяющего все земные процессы. В карбюраторных и дизельных двигателях
распределение по размерам частиц топлива определяет скорость их горения, а
значит и процесс работы двигателя. Конденсационные туманы не только паров воды
образуются при сгорании различных топлив, при этом образуется множество ядер
конденсации, которые могут служить центрами конденсации для других паров, в том
числе и воды. Конденсация пересыщенных паров воды на ионах, которые образуются
при радиоактивном распаде различных элементарных частиц, служит индикацией этих
элементарных частиц в камерах Вильсона.
Этот беглый обзор
может служить убедительным доказательством актуальности проблемы.
1.2 Экологический
аспект проблемы
Осознание
важности экологических проблем, связанных с влиянием жизнедеятельности человека
на атмосферу и гидросферу Земли, является одним из наиболее серьезных стимулов
к изучению процессов, управляющих поведением дисперсных систем в целом и
аэрозолей в частности. Сейчас уже понятно, что мы живем в эпоху серьезного
кризиса технократических идей, подразумевающих неограниченное воздействие
человека на среду обитания. Прагматично-потребительское отношение к природе
оказывается настолько недальновидным, что во многих случаях речь идет буквально
о выживании человечества в преобразованном им природном мире. Особенно
показательными в этом отношении становятся различного рода техногенные аварии и
катастрофы, участившиеся в последнее время.
Экология - далеко
не единственная сфера, где имеют дело с дисперсными системами. Можно назвать
массу природных объектов и множество технологических процессов, которые связаны
с присутствием и применением аэрозолей:
·
межзвездные
и допланетные облака;
·
вулканические
выбросы;
·
атмосферные
процессы формирования и выпадения осадков;
·
двухфазные
течения, используемые в технологических процессах и установках;
·
дисперсные
среды для нужд пищевой и автомобильной промышленности, медицины и сельского
хозяйства.
Это разнообразие
физических проблем и технических приложений, а также целая совокупность
необычных физических и химических свойств фактически позволяют отнести
дисперсные системы к отдельному агрегатному состоянию вещества, которому
внимание стало уделяться лишь в последнее время.
Очень важной
причиной повышающегося интереса к аэрозолям является разнообразие и
фундаментальный характер задач, которые возникают в физике дисперсных систем.
Физическая кинетика, оптика, физика атмосферы, многофазная газодинамика, теория
турбулентности - все эти разделы механики и физики необходимы для
квалифицированного физика-аэрозолыцика и широко используются в классических
работах Максвелла, Томсона, Айткена, Смолуховского, Эйнштейна, Колмогорова,
Чандрасекара, Френкеля, Зельдовича и работах современных исследователей по
физике дисперсных систем. Значительный прогресс в моделировании процессов
формирования и динамики переноса аэрозольных примесей достигнут в последнее
время, благодаря применению быстродействующих ЭВМ и использованию методологии
численного эксперимента.
1.3 О дисперсных системах
Дисперсные
системы - системы, представляющие собой механическую смесь частиц дисперсной
фазы со средой-носителем. Такие системы являются широко распространенным объектом
в природе и повседневной деятельности человека. Образование облаков и выпадение
осадков, формирование аэрозольной компоненты земной атмосферы, эволюция
допланетного роя и частиц межзвездной пыли, миграция дефектов в твердых телах,
двухфазные течения в физических и промышленных установках, перенос в атмосфере
различного рода промышленных и радиоактивных загрязнений - все это далеко не
полный круг явлений, в которых решающую роль играют процессы, происходящие с
дисперсными системами.
Обычно дисперсные
системы подразделяют, исходя из агрегатного состояния частиц дисперсной фазы и
среды-носителя. Ряд дисперсных систем получил отдельные названия:
·
аэрозоли
(взвесь твердых или жидких частиц в газовой среде, обычно в воздухе);
·
эмульсии
(жидкие частицы, обычно стабилизированные защитными оболочками, в жидкой среде)
·
коллоиды
(взвесь твердых частиц в жидкой среде);
·
астрозоли
(твердые или жидкие частицы в вакууме)
Кроме того,
существуют дисперсные системы без устоявшихся названий: ансамбли газовых
пузырьков в твердом теле или жидкости, ансамбли жидких капель в твердом теле и
т. д.
Дисперсные
системы обладают многими необычными физическими свойствами, которые требуют
отдельного изучения и сказываются на практике. Так, отдельно взятая молекула
вещества в газовом состоянии имеет одни свойства, в сплошном состоянии – другие
свойства, а в состоянии аэрозоли (дисперсная фаза) уже совсем другие свойства,
которые являются плавным переходом от газообразной к твёрдой фазе. Можно
назвать своеобразную газодинамику, обусловленную различным движением
среды-носителя и частиц дисперсной фазы; необычные оптические свойства,
вызванные сравнимостью размеров частиц с длинами волн света и влиянием формы
частиц; повышенную способность к взаимодействиям, вызванную чрезвычайно
развитой поверхностью частиц. Особое место среди дисперсных систем занимают
аэрозоли.
1.4
Атмосферные аэрозоли
Обычно
классификация атмосферных аэрозолей проводится на основе их разделения по
способам создания, материалам и характерным размерам частиц. При этом к
аэрозолям обычно относят частицы со скоростями осаждения не больше, чем у капелек
воды диаметром 100 мкм (крупные дождевые капли и осадки тем самым относят к
отдельному классу).
Пыли состоят из
твердых частиц, диспергированных в результате механического измельчения твердых
тел (взрывы, горные работы и т. д.) или высыхания капелек с растворенными
веществами или частицами (солевые частицы над океаном). В обыденном понятии
пылью называют осадок твердых частиц на различных поверхностях, который легко
переходит во взвешенное состояние. Материалы пыли самые различные, а размеры
также колеблются в широких пределах - от субмикронных (0,01 мкм) до
микроскопических (100 мкм).
Дымы образуются
при горении или возгонке летучих веществ, а также в результате химических и
фотохимических реакций. Размеры дымовых частиц - от субмикронных до 5 мкм.
Туманы состоят из
капелек жидкости, образующихся при конденсации пара или распылении жидкости.
Сюда также включаются капли с растворенными веществами или содержащимися в них
частицами. Природные туманы обычно состоят из капелек с диаметром до 10 мкм и
более.
Капельки, а также
частицы различных атмосферных загрязнений и пыли иногда называют дымкой,
которая, на самом деле представляет собой комбинацию из трех названных выше
основных классов аэрозолей. Систему, образующуюся в результате взаимодействия
природного тумана с газообразными загрязнениями, называют смогом. Размеры
частиц дымки и смога обычно - 1 мкм.
Промышленные
аэрозоли, образующиеся при получении и обработке горючих материалов, способны
за счет развитой поверхности к более интенсивному воспламенению, чем исходные
вещества. При скоплении мелкодисперсной пыли таких материалов в замкнутых
помещениях и наличии источников воспламенения может произойти взрыв.
В целом
использование технологических процессов и работа производств, связанных с
выходом аэрозолей в рабочие помещения или атмосферу, требует тщательной оценки
экологической опасности и применения различных средств очистки. Особая чистота
внутри помещений требуется при работе с радиоактивными материалами и в
микроэлектронике. Допустимое содержание аэрозолей регламентируется при этом
соответствующими нормативными документами. Ряд средств очистки и принципы их
работы описаны в изданиях (Спурный и др., 1964; Грин, Лейн, 1972;
Петрянов-Соколов, Сутугин, 1989).
Частицы
атмосферных аэрозолей играют важную роль в процессах конденсации водяного пара
и тем самым в формировании осадков. В метеорологии их просто называют ядрами
конденсации, независимо от физических и химических свойств, а классификацию
проводят по характерным размерам:
·
частицы
Айткена - r < 0,1 мкм;
·
большие
частицы - r = 0,1 + 1 мкм;
·
гигантские
частицы - r > 1 мкм.
Источники
атмосферных аэрозолей принято делить на:
·
естественные
(вулканические извержения, конденсация водяного пара в атмосфере, выветривание
пород, разбрызгивание капелек воды над океаном, космическая пыль)
Для иллюстрации
приведем некоторые цифры (Хргиан, 1986). За счет космической пыли на Землю
поступает в год (1,4-2,0)·107 т вещества при общей массе атмосферы
5·1015 т. При пылевых бурях концентрация пыли в пустынных районах
может достигать 300 мкг/м3, в Подмосковье до 30 мкг/м3 ,
в районах Урала свыше 5 мкг/м3. За счет разбрызгивания капелек воды
при ветре со скоростью порядка 12 м/с над океаном образуется до 500 мкг/м3
солевых частиц - вполне ощутимые количества.
·
антропогенные
- источники, обусловленные жизнедеятельностью человека (промышленные выбросы из
дымовых труб, токсичные выбросы от автомобилей, пожары, взрывы, выветривание
почвы в результате земледелия и открытой добычи ископаемых).
Это дает
поступление (3-4)·108 т аэрозолей в атмосферу за год. Концентрация
аэрозольного смога, обусловленная фотохимическими реакциями с выхлопными
газами, в промышленных центрах достигает 200 мкг/м3 (Хргиан, 1986),
что вполне сравнимо с последствиями пылевых бурь. Промышленные и аварийные
выбросы вредных веществ в атмосферу представляют собой непосредственную
опасность для окружающей среды и населения. Во-первых, процессы переноса
примесей в атмосфере настолько динамичны, что последствия таких выбросов
сказываются практически сразу. Во-вторых, при выбросах в атмосферу загрязняется
приземный слой воздуха и подстилающая поверхность (почва, водоемы,
растительность), что приводит к непосредственному воздействию на окружающую
среду и представляет собой последующую угрозу поступления вредных веществ в
организм человека и животных.
Мощные или
регулярные выбросы в атмосферу могут иметь и глобальные последствия.
Поступление в атмосферу окисей серы, азота и хлора приводит к образованию
водяных капель, содержащих кислоту, и к выпадению кислотных осадков. Выбросы
окисей углерода сказываются на теплообмене в нижних слоях атмосферы и
способствуют глобальному потеплению климата. Проведенный в 40-60-х годах
воздушные ядерные взрывы на десятилетия изменили баланс радиоактивных веществ в
атмосфере и вызвали выпадения радиоактивных осадков (Юнге, 1965; Стыро, 1968; Грин,
Лейн, 1972; Кароль, 1972). Широкое применение хлор-(бром)-содержащих фреонов, а
также выброс соединений азота повлияли на состав аэрозолей в тропосфере и
озонового слоя земной атмосферы (Петрянов-Соколов, Сутугин, 1989; Владимиров и
др., 1991). Выбросы радиоактивных веществ в результате Кыштымской и
Чернобыльской аварий надолго нарушили нормальную жизнедеятельность в районах
этих аварий (Владимиров и др., 1991; Кабакчи, Путилов, 1995). Из этих примеров
видно, что экологическая опасность различного рода газообразных и аэрозольных
выбросов в атмосферу заключается не только в непосредственном влиянии вредных
выбрасываемых веществ на здоровье человека, но и имеет глобальный аспект, связанный
с долговременными процессами изменения химического и дисперсного состава
загрязнений, переносом веществ в тропосфере и стратосфере, влиянием загрязнений
на массовые балансы веществ и температурные режимы в атмосфере.
Страницы: 1, 2, 3, 4, 5
|