Ионно-сорбционная откачка
Ионно-сорбционная откачка . При ионно-сорбционной откачке используют два способа поглощения газа
: внедрение ионов в объем твердого тела под действием электрического поля и
химическое взаимодействие откачиваемых газов с тонкими пленками активных
металлов . Высокоэнергетические ионы или нейтральные частицы , бомбардируя
твердое тело , проникают в него на глубину , достаточную для их растворения
.Этот способ удаления газа является разновидностью ионной откачки . На
рис. 1 показано равновесное распределение концентрации при ионной откачке в
объеме неограниченной пластины толщиной [pic] , рассоложенной внутри
вакуумной камеры . Максимальную удельную геометрическую быстроту ионной откачки можно
рассчитать по формуле [pic] (1) , где [pic]– коэффициент внедрения ионов ;
[pic]= [pic] – удельная частота бомбардировки ; [pic] – плотность ионного
тока ; [pic] – элементарный электрический заряд ; [pic] – молекулярная
концентрация газа . Коэффициент внедрения учитывает частичное отражение и рассеивание ,
возникающее при ионной бомбардировке . Коэффициент внедрения сильно зависит
от температуры тела и слабо – от плотности тока и ускоряющего напряжения .
Значение [pic] наблюдается для Ti , Zn при 300 … 500 К . Максимальное значение концентрации растворенного газа при ионной
откачке можно определить из условия равновесия газовых потоков : [pic] (2)
( D – коэффициент диффузии газа в твердом теле ) . Градиенты концентраций
определяются следующими отношениями : [pic] здесь [pic] – глубина внедрения
ионов ( [pic] – ускоряющее напряжение ) ; [pic] и [pic] – максимальная и
начальная концентрация плотности поглощенного газа . Так как величина [pic] мала по сравнению с [pic] ( константа
[pic]даже для легких газов не превышает 1.0 нм./кВ ) , то величиной [pic]в
уравнение (2) можно пренебречь : [pic] . Отсюда следует выражение для максимальной концентрации растворенного
газа : [pic] . Если величина [pic], рассчитанная по приведенной формуле превышает
максимально возможную в данных условиях растворимость газа в металле , то
поглощенный газ начинает объединяться в газовые пузырьки , вызывая разрыв
металла . Это явление получило название блистер-эффекта . В нержавеющей стали водородный блистер-эффект наблюдается при
поглощение [pic] м3*Па/см2 , что соответствует при быстроте откачки [pic]
м3/(с*см2) и давление [pic]Па приблизительно 300 часов непрерывной работы . По известному значению [pic] можно подсчитать общее количество газа ,
которое будет поглощено единицей поверхности [pic] . Во время ионной бомбардировки наблюдается распыление материала ,
сопровождающееся нанесением тонких пленок на электроды и корпус насоса .
Сорбционная активность этих пленок используется для хемосорбционной откачки
. Распыление активного материала может осуществляться независимо от
процесса откачки , например с помощью регулирования температуры нагревателя
. Расход активного материала в таких насосах осуществляется независимо от
потока откачиваемого газа . Более экономно расходуется активный металл в насосах с
саморегулированием распыления . В этих насосах распыление производится
ионами откачиваемого газа , бомбардирующими катод , изготовленный из
активного материала . Распыляемый материал осаждается на корпус и анод ,
где осуществляется хемосорбционная откачка . Рис1. Установившееся распределение концентрации в неограниченной пластине , бомбардируемой высокоэнергетическими ионами . Оглавление Ионно-сорбционная откачка . 1
Рис1. Установившееся распределение концентрации в неограниченной пластине ,
бомбардируемой высокоэнергетическими ионами . 3
Оглавление 4
Используемая литература : 5
Используемая литература :
Л.Н. Розанов . Вакуумная техника .
Москва « Высшая школа » 1990 .
{ Slava KPSS }
-----------------------
2R
S0 Smax S X h [pic] [pic] [pic] [pic]
|