Меню
Поиск



рефераты скачать Анализ энергоэффективности системы освещения учебных помещений корпуса Т (I этаж)

Анализ энергоэффективности системы освещения учебных помещений корпуса Т (I этаж)

Реферат


Пояснительная записка 60 с, 7 табл., 18 источников.

Объект исследования - система освещения учебных помещений технического корпуса Т СумГУ (I этаж).

Целью работы является анализ энергоэффективности системы освещения, разработка организационных и технических мероприятий по энергосбережению и их финансовая оценка.

Графические материалы: схема размещения источников освещения с таблицей замеров параметров, плакат организационных и технических мероприятий по энергосбережению и финансовая оценка - всего 2 листа формата А1.

Приведено описание основных показателей освещения, описание осветительных систем административных зданий и применяемое оборудование, описание состояния помещений и системы освещения технического корпуса Т, нормирование освещенности, методика проведения аудита системы освещения и применяемое при этом оборудование, необходимые расчеты экономии электроэнергии в существующих осветительных установках.

Ключевые слова: ОСЕЩЕНИЕ, ОСВЕТИТЕЛЬНАЯ УСТАНОВКА, ФОТОМЕТР, ЭНЕРГОПОТРЕБЛЕНИЕ, МЕРОПРИЯТИЕ, ЭКОНОМИЯ ЭЛЕКТРОЭНЕРГИИ.

Тема работы «Анализ энергоэффективности системы освещения учебных помещений корпуса Т (I этаж)».


Содержание


Техническое задание

Реферат

Введение

1       Показатели освещения

2       Описание осветительных систем административных зданий и применяемое оборудование

3       Описание помещений и состояния системы освещения

4       Нормирование освещения

5       Методика проведения аудита системы освещения

6       Оборудование, необходимое для аудита системы освещения

7       Расчет экономии электроэнергии в действующих осветительных установках

8       Повышение качества и энергоэффективности осветительных установок (Индивидуальное задание)

Выводы

Список используемой литературы


Введение


Создание необходимого светового климата для эффективного восприятия зрительной информации - это основная задача освещения, в том числе и искусственного, электрического.

На цели освещения тратится значительная часть вырабатываемой электроэнергии. В последнем десятилетии ХХ-го века осветительные установки ряда стран потребляли следующую часть вырабатываемой электроэнергии: ФРГ - 9 %, Франция - 11 %, Великая Британия - 12 %, Италия - 13 %, Украина - 13 %, Япония - 18 %, США - 20 %. Поэтому осветительные электропотребители представляют важный объект и поле для экономии энергетических ресурсов [18].

Приведенные цифры не дают представления об эффективности использования электроэнергии на освещение, но показывают насколько значимым является снижение затрат на искусственное освещение при ограниченности и исчерпаемости энергоресурсов, а также ухудшении экологической обстановки. Экономия электрической энергии может быть достигнута как за счет уменьшения установленной мощности, так и за счет уменьшения времени наработки за год. Номинальная мощность осветительного оборудования рассчитывается на стадии ее проектирования исходя из нормированных значений освещенности и качественных характеристик освещения, выбранной системы освещения и принятого способа размещения светильников, начальной световой отдачей используемых комплектов "лампа - пускорегулирующий аппарат (ПРА), коэффициента использования светового потока осветительной установки относительно рабочей поверхности, коэффициента запаса, зависящего от изменения светового потока ламп и КПД светильников во времени, снижения отражающих характеристик поверхностей помещения во времени [10].


1 Показатели освещения


Устройство, предназначенное для превращения электрической энергии в оптическое излучение, называется искусственным электрическим источником излучения. При диапазоне оптических измерений в пределах длин волн от 380 до 760 нм в органах зрения вызывается ощущение света. Если электрический источник вызывает электромагнитные колебания в пределах указанных длин волн, то он называется электрическим источником света [1].

К световым величинам относятся: сил света, световой поток, освещенность, светимость, яркость, световая энергия [12]:

I - сила света, единица измерения - кандела [кд]; 1 кд - это сила света, излучаемая в перпендикулярном направлении с поверхности черного тела площадью 1/6×10-5 м2 при температуре затвердевания платины (Т=2045 °К) и давлении 101325 Па;

Ф - световой поток - эффективный поток излучения, определяемый спектральной чувствительностью глаза, единица измерения - люмен [лм]; для точечного источника характеризуется силой света, 5 равномерно распределенной в пространственном угле в стеррадиан, ;

Е - освещенность - плотность светового потока по освещаемой поверхности, Е = Ф / S, единица измерения - люкс [лк];

М - светимость - плотность светового потока, проходящего через поверхность или отраженного от нее, единица измерения - люмен на квадратный метр [лм/м2];

L - яркость - плотность силы света по площади проекции излучаемого (отражающего) тела в заданном направлении, единица измерения - кандела на квадратный метр [кд/м2];

Q - световая энергия, определяемая произведением светового потока на время его действия, единица измерения - люмен на секунду [лм*с].

Показателем эффективности любого источника света является его светоотдача, чем больше ее численное значение, тем более эффективен источник света. Светоотдача представляет собой отношение светового потока источника света к потребляемой мощности, Н=Ф / Р, единица измерения - люмен на ватт [лм/Вт].

К качественным показателям освещения относятся: показатель ослепленности, показатель дискомфорта, спектральный состав излучения, цветовая температура, цветопередача, пульсация светового потока [10].

Показатель ослепленности - величина, характеризующая уровень ухудшения видения при появлении в поле зрения резко контрастной яркости.

Показатель дискомфорта - субъективная количественная оценка степени неприемлемости условий освещения при решении неопределенных зрительных задач.

Спектральный состав излучения - совокупность монохроматических световых потоков, генерируемых источником света, дозировка которых определяется физической природой излучателя и режимом излучения.

Цветовая температура - температура черного тела, при которой цветность его излучения совпадает с цветностью излучения реального тела при истинной температуре последнего.

Пульсация светового потока - удвоенные во времени периодические изменения светового потока источника света, питаемого переменным током.

В современных источниках света электрическая энергия преобразуется в основном двумя путями [12]:

0           посредством нагрева тела электрическим током (тепловые методы);

1           посредством электрического разряда в газах и парах металлов (разрядные).

Различают энергетические, светотехнические, электротехнические и эксплуатационные показатели источников света [10]. К энергетическим показателям относятся:

•        энергетический к.п.д. лампы hэн.л=Фп.л/Рл ,

где Фп л - полный поток излучения лампы, Вт;

Рл - мощность лампы, Вт;

2           эффективный к.п.д. потока излучения лампы hэф.л=Фэф.л/Фпл,
где Фэф.л - эффективный поток излучения лампы.

К светотехническим показателям относятся: эффективный поток излучения лампы, светоотдача лампы, спектральный состав излучения лампы, пульсация светового потока.

К электротехническим показателям относятся: номинальная мощность лампы, номинальное напряжение лампы, номинальное напряжение сети, на которое рассчитана лампа.

К эксплуатационным показателям относятся: полезный срок службы, средняя продолжительность работы до изменения одного из ее параметров сверх пределов, установленных стандартом, зависимость основных параметров лампы от отклонений напряжения сети.

Лампы накаливания имеют достоинства: простота конструкции, дешевизна, простота в эксплуатации, хорошая цветопередача, отсутствие мигания, отсутствие пускорегулирующих устройств, являются единственным источником света при напряжениях 12 - 36 В. К недостаткам ламп относится: низкая светоотдача, малый срок службы, высокая чувствительность к изменениям напряжения [8].

Лампы накаливания используются для бытового, местного, аварийного освещения, в помещениях с небольшим числом часов использования.

Люминесцентные лампы низкого давления образуют при работе ионизированные пары металла и газа, производящие ультрафиолетовое излучение, которое с помощью люминофоров на внутренних стенках трубки лампы преобразуется в излучение, ощущаемое глазом [8].

К достоинствам люминесцентных ламп относится относительная простота конструкции, большой диапазон с точки зрения цветопередачи, относительно высокая светоотдача, большой срок службы. К недостаткам можно отнести мигание лампы, старение лампы, наличие пускорегулирующего аппарата (ПРА), малый диапазон мощностей, чувствительность к снижению напряжения, ограниченный температурный диапазон работы (от 5 до 40 °С).

Трубчатые люминесцентные лампы низкого давления с дуговым разрядом в парах ртути по цветности излучения делятся на белого света (ЛБ, цветовая температура 3500 К), тепло белого света (ЛТБ 2700 °К), дневного света (ЛД, 6500 °К) и лампы дневного света с исправленной цветностью (ЛДЦ).

Мощность ламп 4-150 Вт, светоотдача достигает 75 - 80 лм/Вт, срок службы до 12000 - 25000 ч., но к концу этого срок световой поток снижается до 60 % начального.

Разновидностью ламп являются малогабаритные люминесцентные лампы (КЛЛ), имеющие цоколь, как и у ламп накаливания. Небольшие размеры достигаются за счет сгибания газоразрядной трубки. Срок службы ламп в пять раз больше, чем у ламп накаливания, потребление электроэнергии в четыре раза меньше при 1 том же световом потоке [8].

Люминесцентные лампы используются для внутреннего освещения помещений.

Осветительные приборы содержат источник света и оптическую систему со вспомогательной арматурой и предназначены для освещения различных объектов. Основная функция осветительного прибора - перераспределение светового потока источника света в требуемом направлении окружающего его пространства. Вспомогательными функциями являются: коммутация и стабилизация электрической энергии, защита источника света от механических повреждений, изоляция источника света от взрывоопасных, пожароопасных, влажных, химически агрессивных и пыльных сред, изменение спектрального состава излучения источника света (при необходимости), установочное крепление прибора по месту эксплуатации, выполнение специфических функций (например, при подводном или космическом освещении, технологическом излучении и пр.) [8].

Основными показателями светильников являются: мощность, напряжение питающей сети, габаритные размеры, кривая силы света, световой к.п.д. - h = Фп.с / Фл, где Фпс - полезный световой поток прибора, Фл - световой поток лампы [12].

Светильники можно классифицировать по степени защиты от проникновения пыли и влаги, по исполнению в зависимости от среды использования. Светильник должен удовлетворять требованиям соответствующих технических стандартов.

Одним из основных элементов светильника является его отражатель. Высокоэффективные отражатели используют поверхность, покрытую серебром, которая обладает исключительно высоким зеркальным отражением, обеспечивая максимальное отражение светового потока лампы. Высокоэффективные отражатели обеспечивают увеличение коэффициента использования осветительной установки, в результате чего большая часть светового потока, излучаемого лампами, достигает рабочей поверхности [8].

Для обеспечения пробоя газового промежутка и ограничения дугового разряда в цепь газоразрядных ламп включаются реактивные (чаще всего индуктивные) сопротивления, которые совместно с компенсирующими конденсаторами для повышения коэффициента мощности и блокирующими конденсаторами радиопомех образуют пускорегулирующие аппараты (ПРА). Простейшие элементы управления представляют собой стартер и дроссель, используются также схемы полу резонансного и трансформаторного запуска, наиболее эффективными являются электронные схемы пуска [8, 12].


2 Описание осветительных систем административных зданий и применяемое оборудование


Наиболее массовыми источниками света в течение ближайшего десятилетия, позволяющими получить значительную экономию энергоресурсов и находящими все более широкое применение для освещения административных зданий, будут ЛЛ и КЛЛ. Это обусловлено их достоинствами: высокими световыми отдачами (до 87 лм/Вт для мощных ламп), хорошей цветопередачей (общий индекс цветопередачи более 80), компактностью их светящих тел, позволяющую уменьшить материалоемкость светильников, а также возможностью прямой замены ЛН на КЛЛ со встроенными пускорегулирующими аппаратами (ПРА) и цоколем Е-27 [7, 8].

Достоинства современных источников света в полной мере могут быть реализованы с соответствующими пускорегулирующими аппаратами. В настоящее время для включения источников света используются: как электромагнитные ПРА (ЭМПРА: обычные, с пониженными потерями, с минимизированными потерями), так и электронные пускорегулирующие аппараты (ЭПРА: неуправляемые и управляемые). Сравнительная дороговизна ЭПРА делает оправданным в настоящее время использование также ЭМПРА.

К достоинствам ЭМПРА следует отнести чрезвычайно высокую надежность и относительно низкую стоимость.

К достоинствам комплектов "лампа-ЭПРА" следует отнести [8]:

3      практически полное отсутствие пульсаций светового потока ламп, что позволяет использовать данные комплекты для освещения помещений с тяжелой зрительной работой;

4      высокие световые отдачи комплекта " КЛЛ-ПРА", достигающие световой отдачи самих ламп при их работе на частоте 50 Гц, что позволяет обеспечить экономию электроэнергии в осветительной установке на 25 %;

5      больший на 30-40 % срок службы ламп при их работе с ЭПРА, по сравнению с ЭМПРА;

6      возможность регулирования световым потоком ламп при работе с ЭПРА.

Однако потенциал снижения установленной мощности искусственного освещения в административных зданиях весьма ограничен. Например, лучшие из применяемых в настоящее время для внутреннего освещения административных зданий источники света по характеристикам световой отдачи практически достигли максимально возможного значения в 96-104 лм/Вт, а для современных типов светильников реальные значения КПД составляют 70-80 % и резерв его повышения практически исчерпан. Все шире применяются отделочные материалы с высокими (до 0,8) коэффициентами отражения [18].

Тем не менее, возможно значительное уменьшение потребления электроэнергии в осветительных установках. Анализ показывает, что в структуре энергопотребления административных зданий доля расхода энергии на цели освещения достигает 80 %, четкая же персональная ответственность и материальная заинтересованность в экономии электроэнергии трудно реализуемы. В этом случае оптимизировать энергопотребление можно за счет применения автоматизированных систем управления. Системы управления освещением (СУО) поддерживают требуемые (нормируемые) уровни освещенности в процессе эксплуатации осветительной установки в соответствии с заданной программой, исключая перерасход электроэнергии [14].

При использовании СУО экономия электроэнергии достигается за счет нескольких факторов.

Во-первых, в начальный период эксплуатации люминесцентных ламп, а также при избыточном количестве светильников создаваемая в помещении освещенность завышена и может автоматически уменьшаться до требуемого значения, что снижает энергопотребление на 15-25 %.

Во-вторых, наиболее значительную экономию электроэнергии позволяет обеспечить рациональное использование естественного освещения (переход от искусственного освещения к совмещенному), так как в течение достаточно большого времени суток освещение может быть вообще отключено либо включено на минимальную мощность (1-10 % от номинальной). Экономия может достигать 25 - 40 %.

В-третьих, часовая наработка осветительной установки при отсутствии автоматического управления также превышает рациональные значения, так как при стихийном управлении искусственное освещение остается включенным при достаточном естественном освещении и отсутствии в освещаемых помещениях людей, а также в нерабочее время из-за забывчивости персонала.

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.