Меню
Поиск



рефераты скачать Двухванные печи

Со скачиваемым шлаком уходит, кг:

SiO2 ... 6, 0-0,210 = 1,260

А12О3... 6,0-0,035-0,210

МnО ... 6,0-0,040 -0,240

MgO…60-0,080 = 0,480

CaO …6, 0-0,250-1,500

Р2О5…6,0-0,040 = 0,240

S ... 6, 0-0,003 = 0,018...

Сг2О3…6,0-0,001 =0,006

FeO ... 6, 0.0,276 = 1,656

Fe2O3 ... 6, 0-0,065 =0,39

6,00 кг

Co скачиваемым шлаком теряется 1,5:0,53=2, 83 кг известняка (0,53 содержание СаО в 1 кг известняка).

Обозначая расход известняка за х., будем считать об­щий расход известняка равным (2,83+х) кг с учетом по­терь со скачиваемым шлаком. Теперь находим:

Поступление , кг, из:

металлической шихты 1,393

доломита 1,3-0,02=0,026

магнезитохромита 0,1-0,06=0,006

загрязнений скрапа 0,364

миксерного шлака 0,5-0,38=0,19

известняка 2,83+х)0,02=0,0566+0,02х

2,036+0,02х

Поступление А1ЭО3, кг; из;

Доломита 1,3-0,02=0,026

Магнезитохромита 0,01-0,04=0,004

загрязнений скрапа 0,1575

миксерного шлака 0,5-0,08=0,040

известняка (2,83+х)0,003=0,0085+0,003х

---------------------------------------------------

0,236+0,003х

Поступление СаО, кг, из:

Доломита 1,3-0,55=0,715

магнезитохромита 0,1-0,02=0,002

миксерного шлака 0,5-0,46=0,23

известняка (2,83+х)0,53= 1,5+0,53х

2,447+0,53х

Поступление РзО5, кг; из:

металлической шихты   .   .   .    0,330

известняка........      (2,83+х)0,007=0,002+0,0007х

0,332+0,0007х

Принимая по практическим данным, что в шлаке содер­жится 16 % FeO и 6 % Fe2O3, составим с учетом скачива­ния шлака, формулу количества его в конце 1 периода, кг: SiO2 ... 2,036+ 0,02х-1,260 = 0,776+ 0,02х

А12О3 ... 0,236 + 0,003 – 0,210 = 0,026 + 0,003х

МnО ...0,981–0,240 = 0,741

MgO ... 0,6206 + 0,02х – 0,48 =0,1406 + 0,02х

СаО ... 2,447 + 0,53х– 1,50 = 0,947 + 0,53х

Р2О6 ... 0,332 + 0,0007х –0,24 = 0,092 + 0,0007х

S ... 0,111+0,001х –0,018 = 0,093 + 0,001х

Сг2О3 … 0,012 – 0,006 = 0,006

FeO ,..0,16шл

Fe2O3 …0,16шл 

Lшл = 0,22Lшл + 2,8216 + 0,5747х или

   LШП = 3,617 + 0,737х.

Полагая, что основность шлака в конце I периода дол­жна быть равна 2,6, получим уравнение для определения расхода известняка

В =

откуда

0,947 + 0,53х = 2,0176 + 0,052х  или  х = 2,24 кг.

Теперь можно найти количество шлака LШЛ - 3,617 + 0,737-2,24 = 5,987 кг. Окончательный состав и количество шлака:

Составляющие

Масса, кг

Содержание, %

SiO2

0,9328

15,58

А12О3

0,0371

0,62

МnО

0,8421

14,06

MgO

0,2107

3,52

СаО

2,4254

40,52

РА

0,1063

1,78

S

0,1081

1,82

Сг2О3

0,0068

0,10

FeO

0,9579

16,00

Fe2O3

0,3592



Lшл,=5,9870


Суммарный расход известняка равен 2,83+2,24 = 5,07 кг. Общее количество шлака 6+5,987 = 11,987 кг.

Составим баланс железа на 1 период плавки (табл, 42).

Количество окислившегося железа равно 0,232+1,949 = = 2,181 кг.

Расход кислорода на окисление железа до Fe2O3 0,232X Х48: 112 = 0,099 кг; до FeO 1,949-16:56 = 0,557 кг.

Принимая, что из атмосферы печи в ванну поступает 30% от общего количества кислорода, найдем   величину последнего     3,0175+0,099+0,557+0,1      (3,0175+0,099+ +0,557) =4,04 кг.

Учитывая, что в первом периоде ванна недостаточно и неравномерно прогрета и процессы массобмена замедле­ны, принимаем коэффициент усвоения подаваемого в ванну кислорода, равным 0,9. Тогда расход технического кислоро­да составит

Здесь 0,95-доля O

Расход чистого кислорода 4,04-22,4/32 – 2,828 м3.

Расход чистого   кислорода с учетом коэффициента ус­воения 2,828/0,9 = 3,142 м3.

Количество   неусвоенного   кислорода   3,142–-2,828 = = 0,314 м3 или 0,486 кг.

Количество азота, подаваемого с техническим кислоро­дом 3,3–3,142 = 0,158 м3 или 0,197 кг.

Количество технического  кислорода,   поступающего в ванну 4,04+0,486+0,197 = 4,723 кг.

Выход годного с учетом металла, уносимого   скачива­емым шлаком (10 % от количества шлака)

100–3,216–2,181–0,6825–0,35–0,5–0,6=92,47   кг, где 3,216 – угар примесей; 2,181–количество окисливше­гося железа; 0,6825 – загрязнения скрапа; 0,35 – окалина скрапа; 0,5–миксерный шлак; 0,6 – потери металла со скачиваемым шлаком.

II период

Расчет материального баланса для второго периода плавки от расплавления до раскисления стали, проводится аналогично расчету для I периода.


2.3 Тепловой баланс


Целью расчета теплового баланса,  рабочего простран­ства камеры печи, является определение средней тепловой нагрузки и тепловой нагрузки холостого хода. Расчет про­изводим для одной камеры печи.

Приход тепла

Тепло, вносимое скрапом

820,75-103 кДж = 0,82 ГДж.

Здесь сск=0,469 кДж/(кг-К) – удельная теплоемкость скрапа при £CK=20°C; DCK=0,35 – доля скрапа в шихте; G –250 т емкость одной ванны печи.

2, Тепло, вносимое чугуном

Q4 = GD4 [с? ;пл.ч + К + с* ft ~ ^J ] == 250- 10s-0,65 [0,745 ■ 1200 + 217,72 + + 0,837 (1300 – 1200)3 = 194255,75 ■ 10^ кДж -= 194,26 ГДж, где  Л, –0,65 – доля   чугуна в шихте;   с™ =0,745 кДж/

/(кг-К) –средняя удельная теплоемкость твердого чугуна в интервале температур 0–1200°С:'

cf =0,837 кДж/(кг-К) –тоже жидкого чугуна в интерва­ле температур 1200–1300 °С;

1-4 = 217,72 кДж/кг – скрытая теплота плавления чугуна; £ч=1300°С – температура заливаемого чугуна; ^ш.ч –1200°С – температура плавления чугуна.    • .

3.Тепло экзотермических реакций

С-СО2 ... 0,02405 250 103 34,09 = 204966,1

Si-SiO2 ... 0,00650 250 103 31,10 = 50537,5

Мn-МnО ... 0,00680 250 103  7,37= 12529,0

Fe-Fе2О3(в дым) ... 0,010000-250.103-7,37 = 18425,0

Р-Р2О5 ... 0,00129 250 103 25,00 = 8062,5

S-SO2 ... 0,00012 250 10 9,28 = 278,4

Fe-FeO ... (0,01940 + 0,00053)250-103 4,82 = 24015,6

Fe^Fe2O3 ... (0,00232 –0,00018) 250-103 7,37 = 3943,0

=322757,1 МДж = = 322,76 ГДж

здесь первый столбик чисел–доля выгоревшей примеси;

второй – емкость ванны, кг;

третий – тепловые эффекты реакций, отнесенные к 1 кг элемента, МДж/кг (см. приложение XII).  

4.Тепло шлакообразования

SiO2-(CaO)2SiO2... 0,01393-250-103;28.60-2,32 =8075,75


Р206-(Са0)8РАСа0 ... 0,033 250 103 62 142 4,71 =738,63

 

QШ.о =8,81 ГДж=8814,38 МДж

здесь первая колонка – доля оксида;

третья и четвертая колонки – молекулярные массы

элемента и соединения, соответственно;

пятая колонка – тепловые эффекты реакции шлакооб­разования, МДж/кг (приложение XII).

5.Тепло от горения природного газа

QН р.г = 35069,6 В кДж - 0,035 В ГДж,

где Q=35069,6 кДж/м3 – низшая теплота сгорания при­родного газа (см. пример 35); В – расход природного газа на плавку, м3..

6.Тепло, вносимое подсасываемым в рабочее простран­ство воздухом, идущим на сжигание природного газа и СО

= (9,28В + 0,06279-250-103:28-22(4-2,38) 1,3226-20 =

= 245,47 В + 790598,34ТкДж = 0,000245 В 4- 0,79 ГДж.

Здесь и  теоретические   расходы   воздуха для сжигания 1 м3 природного газа и 1 м3 СО, соответственно

равные 9,28 и 2,38 м3/м3; Dсо– доля образующегося СО (см. материальный баланс плавки);

Mco =28 кг– молекулярная масса СО;

Cв= 1,3226 кДж/м3 К) –теплоемкость воздуха при

t=20°С (приложение I).


3. Расход тепла

 

3.1 Физическое тепло стали

0,91119-250.103[0,7-1500+ 272,16+ 0,837(1600 –1500)1 - 320251,39-103 кДж - 320,25 ГДж.

Здесь Dст–0,91119 выход стали (cm.  материальный баланс);

с=0,7 кДж/(кг К)–удельная   теплоемкость твер­дой стали, средняя в интервале температур 0–1500 °С;

=0,837 кДж/(кг-К) –то же, жидкой стали средняя в интервале температур 1500–1600 °С;-

= 1500 C – температура плавления стали;

= 272,16 кДж/кг – скрытая теплота плавления стали.

2. Физическое тепло стали, теряемой со шлаком

= 0,00734-250- 100.7-1500 + 272,16 + 0,837(1600 –1500)] = 2579,753-103 кДж = 2,58 ГДж.

3. Физическое тепло шлака

Qшл = (1,25-1550+ 209,5) 0,06 250 103 +(1,25 1600+209,35) 0,0628 250 103 = 66889,545 103 кДж=66,89 ГДж.

Здесь 1,25 кДж/(кг-К) –теплоемкость шлака, средняя в интервале температур 0–1600°С;

209,35 кДж/кг – скрытая теплота плавления шлака;

0,06 и 0,0628 – доля шлака скаченного и конечного со­ответственно (см. материальный балане).

4. Тепло, уносимое продуктами сгорания при средней
температуре 1yx= 1600 °С

     =BiyxVyx В 2592,64 10,34=26807,9 В кДж =0,0268 В ГДж. Здесь:

ico2...0,0955 3815,86 = 364,41

iо...0,1875 2979,13 = 558,59

,...0,7170.2328,65 = 1669,64

 = 2592,64 кДж/м3.

Доли СО2, Н2О, N2 и Vyx заимствованы из табл. 17, их энтальпии – из приложения II при tух== 1600 °С.

5. Тепло, расходуемое на разложение известняка

1779,5 0,0507 250 103=22555 103кДж=22,56 ГДж.

Здесь 1775,5 кДж/кг – теплота разложения 1 кг   извест­няка; .

0,0507 –доля известняка (см. материальный баланс).

6. Тепло, затрачиваемое на испарение   влаги и нагрев
паров воды до tyx=1600°C.

 = 0,000786 250 104,187 100+ 2256,8+1,88(1600– 100)]22,4 18 = 1297594,2 кДж - 1,3 ГДж.

Здесь 4,187 кДж/(кг-К) –теплоемкость воды, средняя в интервале температур 0–100 °С;

1,88 кДж/(кг-1<) –то же, пара в интервале температур 100–1600°С;

2256,8 кДж/кг – скрытая теплота испарения 1 кг воды;

0,000786 –доля Н2О в продуктах плавки (см. матери­альный баланс).

7. Тепло, затраченное на нагрев выделяющихся из ван­ны газов до t=1600°C.

СО2...3815,86-0,02146-250.103-22,4:44 = 10422,15-Ю3

СО,..2526,85-0,0б279.250.108.22,4:28 = 31732Д8-1б3

SO2,..3815,86-0,00101.250-103-22,4;64-337,23.103

N2...2328,65-0,00320.250-103-22,4;28  1490,33-103

О2…24б3,97-О,00664-250-Ю3-22,4:32 = 2863,13-103

 = 46845,02-103 кДж = 46,85 ГДж

Здесь первый столбик чисел – энтальпия газов при tух =1600°С (приложение 2); второй столбик чисел –доля газа от массы садки (см. материальный баланс).

8. Тепло, теряемое с уносимыми частицами Fe2O3

 = 0,01571 250 103(1,23 1600 +209,35)= 16773,76 103 кДж =16,78 ГДж.

9. Потери тепла с охлаждающей водой.

В рабочем пространстве двухванной печи водой охлаж­даются заслонки окон (расход воды по 1,67- 10м3/с)„ змеевики столбиков (по 0,56-103 м3/с), амбразура шлако­вой летки (1,12-103 м3/с) и кислородные фурмы (по 0,28 103 м3/с). Принимая, что повышение температуры воды в водоохлаждаемом элементе не должно превышать 20 К, находим потери тепла с охлаждающей водой;

Заслонки 3-1,67-10-3-4,187- 103-14400-20=6041,34 103

Змеевик 6-0,56- 10.4,187-103-14400.20=4051,68- 103

Амбразура 1-1,12-10.4,187- 103-14400-20=1350,56- 103

Фурмы 3-0,28-10-4,187-103=6840-20-481,14-103

=11924,72- 10Дж= 11,92ГДж

Здесь первый столбец чисел – количество водоохлаждаемых элементов; второй – расход воды, м3/с; третий – теп­лоемкость воды, кДж/(м3К); четвертый – время теплово­го воздействия на водоохлаждаемый элемент, с; пятый – разность температур выходящей и входящей воды, К.

Рамы завалочных окон и пятовые балки свода имеют испарительное охлаждение. Принимая расход химически очищенной воды на каждый элемент 0,11- 10м3/с  найдем общий расход воды:

Рамы   завалочных окон 3-0, 11 10=0,33- 10

Пятовые балки   передней

Стенки 3-0,11 103=0,33-I0

Пятовые балки задней стенки 3.0,11-10=0,33-.10

Всего =0,99-103 м/с

Считая, что выход пара составляет 90 % (0,89- 103м3/с), найдем потери тепла с испарительным  охлаждением.

 4,187-103 0,99.10 (100 – 30) 14400 + [2256,8 +1,88(150 -100) 103-0,89-10 14400 18:22,4 =27952,17-103 кДж = 27,95 ГДж.

Суммарные потери тепла с охлаждающей водой равны

Qохл = 11,92 + 27,95=39,87 ГДж.

10. Потери тепла через футеровку [формула (155)].

Потери тепла через свод

  14042,073-103 кДж = 14,04 ГДж

Коэффициент теплопроводности магнезитохромита со­гласно приложению XI при средней температуре свода 0,5 (1580+300)=940°С равен =4,1- 0,0016-940=2,6 Вт/(м К). Коэффициент теплоотдачи конвекцией равен

=10+0,06 300=28 Вт/(м2 К). Толщина футеровки 0,5(0,46+0,10)=0,28 м взята средней за кампанию печи.

Потери тепла через стены печи

Задняя стенка имеет слой магнезита средней толщи­ной  0,75 м и слой легковесного шамота толщиной =0,065 м. Принимая температуру наружной поверхно­сти футеровки равной 200°С, а на границе раздела слоев 1100°С, согласно приложению XI получим

м - 6,28 0,0027 0,5 (1580 + 1100) = 2,66 Вт/(м К) и

= 0,314 + 0,00035 0,5(1100 + 200) = 0,54 Вт/(м К) и

 а = 10 + 0,06-200 = 22 Вт/(м К).

Тогда

= 1159,32  10 кДж=1,16 ГДж

Потеря тепла через переднюю стенку

 12,54 14400=1398,8 10кДж=1,4 ГДж

Здесь  = 6,28–0,0027(1580 + 200)/2 = 3,88 Вт/(м К).

Потери тепла через под равны

= 5100 102,4 14400 = 6475,78-103 кДж = 6,48 ГДж.

Здесь: 5100 Вт/м2 –удельные потери тепла через под; 102,4 м2 – площадь пода. Всего теряется через футеровку

=14,04 + 1,16 + 1,4 + 6,48= 23,08 ГДж.

11. Потери тепла излучением через окна печи [формула
(156)]

5,7 0,65 () 1,6 1,7 5400 =

= 6697,34 103 кДж = 6,7 ГДж.

12. Потери тепла на диссоциацию СО2 и Н2О   примем
равными 2 % от тепла, получаемого при сжигании природ­ного газа, т. е.

Qдисс = 0,02 0,035 В = 0,0007 В ГДж.

13. Потери тепла с выбивающимися газами и примем
равными 2,5 % от тепла, получаемого при сжигании при­родного газа

= 0,025-0,035 3 = 0,00088 В ГДж.

Расход природного газа найдем из уравнения теплово­го баланса

0,82 + 194,26 + 322,76 + 8,81 + 0,035 В + 0,000245 В + 0,79 = 320,25 + 2,58 + 66,89 + 0,0268 В 22,56 +1,3 + 46,85 + 16,78 + 39,87 + 23,08 + 6,7 + 0,0007 В + +0,000885 или

0,006865 В = 20,21,

откуда

В=2943,9 м3.

Тепловой баланс рабочего   пространства камеры двухванной печи представлен в табл. 43.

Средняя тепловая нагрузка равна

Qcp = 35, 0 2943, 9:14400 = 7,155 МВт. Тепловая нагрузка холостого хода равна (39,87+ 23,08+ 6,7): 14400 =4,84 МВт.

Таблица 2. Тепловой баланс камеры двухванной печи

Статья прихода

ГДж {%)

Статья расхода

ГДж (%)

Физическое тепло: скрапа  .... чугуна  .... воздуха   .   .   . Тепло реакций: экзотермических шлакообразования   ..._.. Тепло от  горения природного    газа

0,82(0,13) 194,26(30,78) 1,51(0,24)

322,76(51,13) 8,81(1,39) 103,04(16,33)

Физическое тепло:
стали   ....
металла в шлаке
шлака   ....
Разложение изве­стняка  ....
Испарение    влаги
Нагрев газов
Вынос с частица­
ми Fe2O3  ....
Водяное охлажде­ние        

Потери тепла:
через футеровку
излучением   .   .
на диссоциацию
с    выбивающимися  газами   .   .   .
с продуктами сго­рания  

320,26(50,74) 2,58(0,41) 66,89(10,55)

22,56(3,57) 1,30(0,21) 46,85(7,42)

16,78(2,66) 39,87(6,33)

23,08(3,66) 6,70(1,08) 2,09(0,33)

2,63(0,42) 79,60(12,62)

Итого    

631,20(100,0)



Итого    

631,20 (100,0)


Расход топлива по периодам плавки

Период выпуска и заправки (продолжительность 1440 с). Примем, что тепловая нагрузка в период выпуска и заправки равна 75 % средней тепловой нагрузки. Тогда

= 0,75-7,155=5,366 МВт, а расход природного газа

5,366-1440/35,0 = 220,64 м3/период.

Период завалки и прогрева (продолжительность 4680 с). В этом периоде поддерживают максимальную теп­ловую нагрузку, составляющую 125 % от средней. Тогда

Q2 = 1,25-7,155 = 8,94 МВт

и В2 - 8,94-4680/35,0 = 1195,69м/период.

Период заливки чугуна и плавления (продолжитель­ность 4680 с). Обычно период заливки и плавления про­ходит при средней тепловой нагрузке. Тогда

Q3 = 7,155 МВт и В = 7,155 4680/35,0=956,87 м/период.

Период доводки (продолжительность 3600 с) Q4 ==(7,155 14400- 5,366 1440- 8,94 4680- 7,155 4680)/3600=5,55 МВт. Тогда В4 = 5,55 3600/35,0=570,7 м3/период.

Правильность расчета проверяем, суммируя расходы при­родного газа по периодам

220,64 + 1195,69 + 956,87 +570,70 - 2943,9 м3, что соответствует значению, найденному из теплового ба­ланса.

Заключение

 

Таким образом, двухванная  печь имеет много эксплуатацион­ных и сантехнических недостатков. В связи с этим и несмотря на то, что двухванные печи имеют значительную производительность, их следует рассматривать как временную, промежуточную конструкцию, соответствующую сложному (в техническом и эко­номическом отношении) периоду полного перехода нашей метал­лургии с мартеновского на конвертерный способ производства стали.

Список использованных источников

 

1 Металлургическая теплотехника в 2-х томах 1. Теоретические основы: Учебник для вузов В. А. Кривандин, В. А. Арутюнов,  Б. С.Мастрюков и др. М.: Металлургия, 1986. 424. с.

2 Металлургические печи: Атлас учебное пособие для вузов В. И. Миткалинный, В. А. Кривандин, В. А. Морозов и др. М.: Металлургия 1987.


Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.