Меню
Поиск



рефераты скачать Влияние микроэлементов на урожайность и качество волокна льна-долгунца

Результаты исследований М. М. Умарова показали, что активность азотфиксации в посевах злаковых трав (тимофеевка, овсяница луговая) на дерново-подзолистых суглинистых почвах изменялась в течении вегетации и имела два максимума: в начале колошения, а во втором укосе – в фазу цветения злаков. В почве незасеянного участка азотфиксирующая активность была в 1,5 – 2 раза ниже, чем под посевами злаков в течение вегетационного периода изменялась мало. Аналогичные закономерности получены и при изучении динамики активности азотфиксации в дерново-подзолистой супесчаной почве на полях ячменя и картофеля. Под ячменём более высокий уровень азотфиксации также соответствовал фазе начало колошения, под картофелем – фазам бутонизации и цветения. Она была значительно ниже на участках без растений, а также ночью по сравнению с днём[29].

Таким образом, стимулирующее влияние растений на деятельность диазотрофных бактерий наиболее вероятно объясняется поступлением в прикорневую зону легкодоступного энергетического материала из корневых выделений и корневого опада. Известно, то интенсивность корневых выделений возрастает в фазы активного развития растений и при высокой скорости фотосинтеза[32]. У злаков в этот период ассимиляционная поверхность растений достигает максимального размера и  возрастает продуктивность фотосинтетического аппарата. Имеется ряд данных о тесной зависимости азотфиксации в ризосфере растений от фотосинтетической деятельности. В частности, только этой зависимостью можно объяснить суточную динамику азофиксации в ризосфере[14].

Более высокий уровень процесса азотфиксации в полевых условиях в ризосфере по сравнению с почвой без растений можно объяснить только массированными поступлениями в прикорневую зону легкодоступного энергетического субстратов в виде прижизненных растительных выделений и опада.

Зависимость интенсивности фиксации атмосферного азота ассоциативными азотфисаторами от выделительной деятельности корневых систем растений, а в конечном счёте от фотосинтетической активности , свидетельствует о тесной сопряжённости двух уникальных биологических процессов – азотфиксации и фотосинтеза. Подтверждением этого является низкий уровень несимбиотической и ассоциативной азотфиксации в районах с низкой продуктивностью фотосинтеза и высокий их уровень в районах с высокой его продуктивностью.

Следовательно, растения в значительной степени влияют не только на азотфиксирующую активность почвы, но и являются главным фактором, определяющим динамику ассоциативной азотфиксации.

Определение количества азота, которое поступает в почву под различными сельскохозяйственными культурами за счет деятельности диазотрофных почвенных бактерий, является одной из главных задач экологии ассоциативной азотфиксации. Для оценки масштабов вклада дизотрофных почвенных бактерий в азотный баланс почв требуется накопление большого фактического материала. Особое значение имеют исследования, проводимые в поле, позволяющие определить уровень азотфиксации в конкретных почвенно-климатических условиях и учесть влияние на процесс различных возделываемых культур.

Опыты, проведенные М.М. Умаровым на дерново-подзолистых почвах показали, что при наличии активно вегетирующей растительности (ячмень, луговые злаки, злаковое разнотравье) суммарная продуктивность азотфиксации за вегетационный период достигла 40 – 55 кг/га. В то же время в парующей почве и в междурядьях растений ее уровень не превышал 10 – 13 кг в пересчете на 1 га. Размеры ассоциативной азотфиксации на дерново-подзолистой тяжелосуглинистой  почве под тимофеевкой и овсяницей луговой составили соответственно 40,1 и 39,2 кг/га за сезон, а на парующем участке и в междурядьях растений – 13,1 кг/га[29].

Для дерново-подзолистой супесчаной почвы размеры азотфиксации за сезон составили 40,4 кг/га под ячменём и 30 кг/га под картофелем. В то же время на незанятых растениями участках фиксируется лишь 10-13 кг/га биологического азота. Очевидно, что именно это количество молекулярного азота связывается  бактериями и за счёт использования пожнивных растительных остатков, т. е. в ходе несимбиотической азотфиксации. Остальные 20-25 кг азота на гектар усваивается диазотрофами при потреблении ими в качестве углеродной пищи легкодоступных органических соединений, выделяемых растениями в прикорневую зону в виде корневых выделений и корневого опада, т. е. за счёт ассоциативной азотфиксации.

Кроме растений среди других экологических факторов, определяющих уровень ассоциативной азотфиксации, существенное значение могут иметь влажность и температура почвы, концентрация углекислоты, азотные, фосфорные удобрения и др.

Результаты лабораторных, вегетационных и полевых опытов проведённых М. М. Умаровым на дерново-подзолистых почвах, свидетельствуют о высокой степени влияния влажности почвы на её азотфиксирующую способность. При влажности ниже 20% азотфиксация оставалась на относительно низком уровне, незначительно изменялась в от 8 до 20%. При увеличении влажности выше этого уровня активность азотфиксации быстро росла, достигая максимума при влажности около 40%[30].

При сопоставлении значений ассоциативной с изменением температуры почвы в верхнем горизонте (0-10) в течение вегетационного периода корреляций между этими величинами не установлено. Это можно объяснить тем, что, во-первых, летом температура верхних горизонтов почвы колеблется не столь значительно, чем влажность. Во-вторых, лимитирующим фактором для азотфиксации температура становится лишь при относительно низких значениях – ниже 7оС, летом же температура почвы в верхних горизонтах в средней полосе редко опускается ниже 40оС[31].

Помимо  уже рассмотренных факторов, существенное влияние на ассоциативную азотфиксацию может оказать концетрация СО2 в атмосфере. Известно, что среднее содержание углекислоты в земной атмосфере в 0,03% является субоптимальной для растений, и при повышении концентрации СО2 до 0,1-0,2% в условиях отсутствия лимитирования другими факторами фотосинтез усиливается. В целом продуктивность фитоценозов и в особенности агрофитоценозов не в последнюю очередь определяется содержанием СО2 в воздухе[14].

Считается, что нехватка углекислоты для нормального протекания фотосинтеза – одна из причин снижения продуктивности агроэкосистем при одностороннем применении минеральных удобрений. В период интенсивного развития культурные растения синтезируют около 360-380 кг/га сухой массы за сутки, затрачивая до 720 кг СО2 [32]. В тоже время в слое воздуха над гектарным участком содержится только около 5 кг СО2; необходим постоянный приток углекислоты для поддержания высокой продуктивности фотосинтеза[14].

В настоящее время почти нет сведений о действии повышенной концентрации углекислоты в атмосфере на азотфиксирующую деятельность микроорганизмов. Однако опыты, проведённые М. М. Умаровым свидетельствуют, что в условиях гнотобиотических систем от 25 до 35% углерода ассимилированной растениями углекислоты использовалось для ассоциативной азотфиксации. Поэтому оптимизация содержания СО2 в атмосфере может служить одним из способов повышения не только продуктивности фотосинтеза, но  и масштабов ассоциативной азотфиксации. Активное регулирование концентрации углекислоты в приземном слое атмосферы путём внесения навоза, компостов, запашки соломы и других растительных остатков может способствовать повышению доли "биологического" азота в урожае[29].

В последние годы, после открытия явления ассоциативного связывания азота небобовыми растениями, появились многочисленные предложения проводить инокуляцию растений активными штаммами азотфиксирующих бактерий. Накоплен обширный экспериментальный материал, показывающий высокую эффективность этого приёма.

Исследования кафедры агрохимии БГСХА показали, что при обработке семян ячменя бактериальными удобрениями на основе азоспириллы – азобактерином, полученным в БелНИИПА, урожайность зерна по сравнению с фосфорно-калийным фоном в среднем за 9,1 ц/га. Действие бактериального удобрения было эквивалентно 30 кг/га азота. Весьма эффективным , по данным БелНИИПА, оказалось применение этого удобрения и под многолетние злаковые травы. Действие было эквивалентно внесению 40-60 кг/га минерального азота, а прибавки урожайности многолетних трав (ежа сборная, овсяница луговая, кострец безостый) составили 7,9-24%[10].

 Кроме того, применение бактериального удобрения на основе азоспириллы снижало поступление цезия-137 в растения трав в 1,4-1,7 раза[16].

Довольно высокие прибавки урожая льна-долгунца от применения препаратов ассоциативных азотфиксаторов, получены во ВНИИ сельскохозяйственной микробиологии г. Санкт-Петербург. Данные исследования Воробейкого Г.А., Хмелевской И.А. и др. обосновывают возможность успешного использования бактериальных препаратов для улучшения минерального питания растений льна за счет повышения уровня ассоциативной  азотфиксации в ризосфере и мобилизующей активности бактериальных штаммов по отношению к минеральным элементам, находящимся в труднодоступном для поглощения состоянии. Улучшение минерального питания может происходить также в результате увеличения мощности корневой системы.

Обработка семян льна-долгунца бактериальными препаратами является перспективной в отношении улучшения минерального питания, стимуляции роста, увеличения  выхода волокна и повышения продуктивности этой культуры. Действие различных штаммов бактерий на исследованные показатели не однозначно: оно меняется по годам исследований в зависимости от почвенно- климатических условий и реакции самих сортов на обработку. Из испытанных препаратов более эффективными оказались агрофил, экстрасол и ризоэнтерин[11]. В опытах Н. В. Путырского и Е. М. Путырской, проведённых в Гродненском СХИ, при обработке семян озимой ржи бактериальными диазатрофами в среднем за 5 лет прибавки зерна составили: от азоспириллы 0,8; артробактерина – 2,5; агроспирила 3,1 ц/ га при урожайности на фоне N60 P60K90  39,1 ц/га[24].

Преимущество ассоциативных бактерий в их разностороннем воздействии на растения. В процессе жизнедеятельности корневые диазотрофы выделяют специфические биологически активные соединения, фитогармоны и антибиотики, способные оказывать значительный ростостимулирующий и антифунгальный эффект. За счёт бактеризации семян увеличивается длина стеблей и корней растений (в среднем в 1,5 раза), возрастает количество продуктивных стеблей и корней растений (на 15-30%). Защитное действие ассоциативных бактерий проявляется в подавлении развития фитопатогенных почвенных грибов[21].

Наряду с другими, одним из факторов, оказывающим сильное регулирующее действие на азотфиксацию вообще и на ассоциативную азотфиксацию в частности, являются минеральные азотные удобрения. Если в опытах in vitro уже давно установлено влияние торможения азотфиксации при наличии связанного азота в среде, то вопрос о его влиянии на азотфиксацию в почве в присутствии растений остаётся пока сложным и мало изученным.

В литературе имеются противоречивые сведения о влиянии минеральных соединений азота на активность азотфиксациив почве. Широко распространено мнение, что минеральный азот сильно тормозит этот процесс. В то же время имеются данные, что дозы азотных удобрений в пределах 100-150кг/га лишь кратковременное подавление азотфиксации, а существенное торможение наблюдается при более высоких дозах связанного азота. Характерно также, что азотные удобрения действуют в первую очередь на фотосинтезирующие бактерии-азотфиксаторы и только с увеличением дозы начинают синтезировать азотфиксирующую активность гетеротрофных бактерий. Азотные удобрения, внесённые в небольших дозах, стимулируя развитие растений на  первых этапах и повышая продуктивность фотосинтетического аппарата, способствует, после удаления азота в почве в результате потребления их растениями и микроорганизмами, возрастанию ассоциативной азотфиксации на последующих стадиях развития растений[6]. 

Усиление ассоциативной азотфиксации в ризосфере способствует снижению коэффициента использования азотных удобрений. Именно этим можно объяснить хорошо известное в агрохимии явление снижения коэффициента использования азота из минеральных удобрений с увеличением их доз. Следовательно, оптимизация доз азотных удобрений с учётом свойств почвы, биологических особенностей растения и экологии ассоциативной азотфиксации может позволять увеличить дозу «биологического» азота в урожае и более экономно расходовать минеральные азотные удобрения[6].

Как видно из приведенного обзора литературы эффективность ассоциативных азотфиксаторов изучена на многих небобовых растениях в различных зонах, в том числе и в зоне распространения дерново-подзолистых почв. Однако сведения об их влиянии на минеральное питание, продуктивность и качество льна-долгунца весьма ограничены, а в условиях Республики Беларусь отсутствуют, что и послужило основной задачей наших исследований.










2. Экспериментальная часть

2.1. Цели и задачи исследований


Целью наших исследований являлось выявление эффективности бактериаль-

ного диазатрофа азобактерина на льне-долгунце.

Программой исследований предусматривалось решение следующих задач:

1)Изучить на фоне PK и NPK удобрений влияние биологически активного препарата азобактерина на динамику накопления растениями льна надземной массы, рост их в высоту, урожайность и качество льнопродукции.

2)Дать экономическую оценку применения азобактерина под лён-долгунец.


2.2. Условия и методика проведения исследований

2.2.1. Агроклиматические условия


 Умеренно-континентальный климат республики с мягкой и влажной зимой и относительно прохладным солнечным летом можно характеризовать как благоприятный для возделывания большинства сельскохозяйственных культур, в том числе и льна-долгунца. Для нормального роста и развития льна в зависимости от возделываемого сорта (от сева до созревания), требуется сумма активных температур в пределах 1100-1500оС. По этому показателю вся территория республики является пригодной для возделывания льна-долгунца. Оптимальной среднесуточной температурой для появления всходов льна является 9-12оС, для формирования вегетативных органов -14-16оС, для генеративных органов -16-19оС и в период плодоношения -16-18оС. Оптимальные сроки сева льна, когда почва на глубине 5-10 см прогреется до 8-10оС, наступают в Могилёвской области с 25 апреля до конца первой декады мая[1].

Лён-долгунец – влаголюбивое растение. Опытами установлено, что на образование единицы сухого вещества лён в течение вегетационного периода расходует 400-430 единиц воды (транспирационный коэффициент). Самая высокая урожайность волокна льна-долгунца наилучшего качества формируется в тех случаях, когда после появления всходов запасы продуктивной влаги в пахотном слое почвы составляют 40-50, в метровом – 200-250 мм, а в конце бутонизации  - начала цветения эти запасы соответственно не ниже 20-25 и 150-170 мм[15].

Оптимальные для льна-долгунца условия создаются при выпадении до фазы ёлочки около 64 мм осадков, в фазу быстрого роста – 69, бутонизации – 12-14, цветения 40, в фазу созревания 34 мм.

Избыточное выпадение атмосферных осадков, преимущественно в конце вегетации, сопровождающееся сильными ветрами, приводит к полеганию посевов, особенно на более плодородных при внесении повышенных доз азотных удобрений. При этом затягивается созревание льна, ухудшается его качество, затрудняются условия механизированной уборки.

Погодные условия 2004 г. складывались своеобразно (табл. 2.1, 2.3).

Таблица 2.1

Метеорологические условия вегетационного периода 2004 г.

(данные Горецкой метеостанции)


Месяцы

Декады

Среднее за месяц

Среднее многолетнее значение

1

2

3

Декады

Среднее за месяц

1

2

3

Температура, оС

Апрель

4,1

10,3

16,1

10,2

1,8

4,8

7,7

4,8

Май

8,2

10,0

15,4

11,2

10,4

12,6

14,2

12,4

Июнь

15,0

14,3

15,8

15,0

15,1

15,9

16,6

15,9

Июль

16,2

17,5

17,5

17,1

17,3

17,7

17,8

17,6

Август

16,2

17,0

15,0

16,1

17,3

16,3

14,8

16,1

Сентябрь

13,0

7,9

7,8

9,6

13,0

11,0

9,1

11,0

Осадки, мм

Апрель

46,7

33,2

0,1

80,0

15,0

15,0

16,0

46,0

Май

2,1

1,5

17,5

21,1

16,0

17,0

22,0

55,0

Июнь

23,6

13,5

31,9

69,0

23,0

26,0

28,0

77,0

Июль

61,9

51,5

50,7

164,1

28,0

28,0

32,0

88,0

Август

19,1

25,5

15,3

59,9

28,0

26,0

27,0

81,0

Сентябрь

16,3

8,9

1,8

27,0

23

20

19

62

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.