Меню
Поиск



рефераты скачать Виды цементов


Доменные шлаки для изготовления различного рода строительных материалов используются у нас больше 100 лет. В 1865 г., вскоре после того, как стали применять грануляцию шлаков водой и были выявлены их гидравлические свойства, возникло производство стеновых камней из смеси извести и шлака. В 90-х годах прошлого столетия в нынешном Днепропетровске и Кривом Роге построили набивным способом первые крупные здания из шлакобетона. Позже, в 1913—1914 гг., в Днепропетровске был выстроен первый завод шлакопортландцемента. Примерно в то же время производство его было организовано на Косогорском металлургическом заводе в Туле. В настоящее время объем производства шлакопортландцемента у нас в стране достигает около 30% общего выпуска цемента.

Шлакопортландцемент является гидравлическим вяжущим веществом, получаемым путем совместного тонкого измельчения клинкера и высушенного гранулированного доменного шлака с обычной добавкой гипса; шлакопортландцемент можно изготовить тщательным смешиванием тех же материалов, измельченных раздельно.

По ГОСТ доменного шлака в этом цементе должно быть не меньше 21% и не больше 60% массы цемента; часть шлака можно заменить активной мине ральной добавкой (трепелом) (не более 10% массы цемента),, что способствует улучшению технических свойств вяжущего. В шлакопортландцементе, предназначаемом для применения в массивных гидротехнических сооружениях, предельное содержание шлака не регламентируется и устанавливается по соглашению сторон. Разновидностями шлакопортландцемента являются нормальный быстротвердеющий и сульфатостойкий. Технология производства шлакопортландцемента отличается тем, что гранулированный доменный шлак подвергается сушке при температурах, исключающих возможность его рекристаллизации, и в высушенном виде подается в цементные мельницы. При помоле шлакопортландцемента производительность многокамерных трубных мельниц понижается, что объясняется, по-видимому, низкой средней плотностью шлака, ограничивающей возможность достаточного заполнения по массе объема мельниц. Иные результаты получаются при применении кислых шлаков как мокрой, так и в особенности полусухой грануляции. При совместном помоле с клинкером эти шлаки, хотя они и в значительной степени остеклованы, не сосредотачиваются в тончайших фракциях цементного порошка. Наличие крупных зерен шлака в составе шлакопортландцемента несколько замедляет процесс твердения.

Для получения каждого компонента с наиболее приемлемой для него тонкостью помола следует размалывать клинкер и шлак раздельно. В зависимости от сравнительной сопротивляемости клинкера и шлака измельчению принимают две схемы помола. По первой клинкер предварительно измельчают сначала в первой мельнице, а затем уже во второй совместно со шлаком. Такая схема рекомендована Южгипроцементом для получения быстротвердеющего шлакопортландцемента. Она рациональна при более низкой размалываемости шлака, чем клинкера. В этом случае достигается особо тонкий помол клинкера, что ускоряет твердение шлакопортландцемента.

Вторая схема предусматривает обычный совместный помол шлака и клинкера при примерно одинаковой их размалываемости. В этом случае измалываемые компоненты еще дополнительно истирают друг друга. Высокая тонкость помола — развитая удельная поверхность — особенно важна для клинкерной части цемента. При этом также проявляется физико-химическая потенциальная активность шлака. Увеличение удельной поверхности шлакопортландцемента до 3200—3000 см2/г позволяет повысить его прочность примерно до прочности чистого портландцемента с удельной поверхностью — 3000 см2/г.

Клинкер для шлакопортландцемента должен иметь такой минералогический состав и структуру, чтобы были обеспечены твердение и высокая прочность «клинкерной части» в составе шлакопортландцемента. Целесообразно, чтобы по физико-химической характеристике он приближался бы к клинкерам высокопрочных быстротвердеющих портлапдцементов. Гипс ускоряет схватывание шлакопортландцемента, однако дозировку его нужно устанавливать экспериментально. Содержание шлака и других активных добавок в составе цемента составило в 1980 г. в среднем по промышленности 21,7%. Наиболее быстрое твердение происходит при 30—40%) шлака. По ГОСТ к шлакопортландцементу предъявляются такие же требования по тонкости помола, срокам схватывания, равномерности изменения объема, содержанию S03 и MgO в клинкере как и к портландцементу. По прочностным показателям он разделяется на марки 300, 400 и 500. Отличительной его особенностью является повышенная прочность на растяжение и изгиб. В отличие от пуццолановых портландцементов шлакопортландцемент не вызывает повышения водопотребности растворов и бетонных смесей. При несколько замедленном росте прочности в первый после затворения период он интенсивно наращивает ее в последующем. За срок от семи суток до одного года прочность у портландцемента увеличивается примерно вдвое, а у шлакопортландцемента— в нормальных температурно-влажностных условиях возрастает значительно больше — примерно в 2,5 раза.

Твердение шлакопортландцемента обусловливается более сложными процессами, чем портландцемента из-за шлака. Происходит гидратация клинкерной части цемента, в результате чего в твердеющей системе образуется насыщенный известковый раствор, который образуется также и при разложении сернистого кальция.

Весьма важна концентрация в растворе как ионов Са2+, так и гидроксильных ОН-; существенная роль последних заметна по интенсивной гидратации шлака при воздействии щелочных растворов натрия или калия; в растворе имеется также некоторое количество ионов S04.

В результате создается среда, способная вызвать щелочное и сульфатное возбуждение зерен шлака, поверхностные слои которых вовлекаются в результате этого в процессы гидратации и образования цементирующих соединений. Контактируя в полостях и микротрещинах с поверхностными слоями шлакового стекла, известковый раствор способствует переводу в раствор находящихся на поверхности шлаковых зерен катионов вследствие разрыва кремнекислородных связей. В результате при взаимодействии с известью образуются гидросиликаты кальция, вначале более основные, а по мере снижения концентрации извести в реагирующей среде — уже низкоосновные серии CSH (В).

Исследования процессов твердения известковошлаковых смесей и шлакопорт-ландцементов показали, что происходит химическое связывание шлаком СаО.

В процессе твердения шлакопортландцемента образуется гидросульфоалюминат кальция; после израсходования всего гипса при достаточно высокой концентрации извести возможно образование гидроалюминатов кальция. Не исключена возможность появления гидрогеленита — C2ASH8.

Шлакопортландцемент в отличие от портландцемента не проявляет тенденции к снижению прочности при твердении в результате обычно возникающих внутренних напряжений. Количество связанной воды при твердении шлакопортландцемента зависит преимущественно от активности и соответствует степени гидратации клинкерной части шлакопортландцемента в особенности при кислых шлаках. Содержание шлака в шлакопортландцементе уменьшает контракцию, причем через сутки это уменьшение пропорционально содержанию шлака в цементе. При одинаковом соотношении шлака и клинкера контракция к 30 суткам больше у шлакопортландцемента на основных шлаках. Контракция шлакопортландцемента на кислых шлаках зависит, главным образом, от химико-минералогического состава клинкера.

Усадочные деформации у шлакопортландцемента в растворе 1:3 с нормальным песком к 4 месяцам твердения на воздухе достигают 0,6—0,76 мм/м при содержании в цементе 50% кислых доменных шлаков либо 70% основных доменных шлаков. У взятого для сравнения пуццоланового портландцемента усадка составила 1,15 мм/м. Причина усадки в условиях воздушного твердения — в основном удаление свободной воды; у шлакопортландцементов с небольшой добавкой шлака, ниже 50%, усадка зависит преимущественно от минералогического состава клинкера.

Тепловыделение при гидратации шлакопортландцемента значительно ниже, чем у портландцемента. Это препятствует его использованию в зимних условиях, но положительно сказывается при изготовлении массивного бетона. Для нормального твердения шлакопортландцемента необходима температура не ниже 288 К, при более низких бетонную смесь необходимо подогревать.

Исследовалась стойкость шлакопортландцементов с кислыми и основными шлаками по отношению к выщелачиванию методом фильтрации дистиллированной воды. Опыты показали, что введение в цементы как кислых, так и основных шлаков повышает их стойкость по отношению к действию мягкой воды. Это характеризуется уменьшением абсолютного количества выщелоченной из шлакопортландцемента извести, а также меньшей потерей прочности по сравнению с портландцементом и пуццолановым портландцементом. Твердые зерна шлака, довольно медленно гидратирующиеся, создают дополнительный жесткий каркас, который сохраняется и после выщелачивания части извести из клинкерной составляющей шлакопортландцемента. Шлакопортландцемепты обладают достаточной морозостойкостью, которую можно повысить путем введения поверхностно-активных воздухововлекающих и других добавок, уменьшения В/Ц и созданием условий для предварительного твердения примерно до 3 мес до начала морозов. Последнее особенно важно для шлакопортландцементов на базе кислых шлаков, содержащих больше «слабо связанной» воды и вследствие этого менее морозостойких, чем шлакопортландцементы на основных шлаках. Сравнительно высока морозостойкость цемента при содержании 60—80% шлака. Для водонепроницаемости существенное значение имеет как вид использованного для получения цемента шлака, так и его дисперсность. Из шлакопортландцемента можно получить водонепроницаемые бетоны при высокой удельной поверхности цемента, а также при добавке 10% другой активной минеральной добавки. Для повышения активности шлакопортландцементов применяется мокрый помол шлаков и последующее смешение шлакового шлама в бетономешалке с портландцементом. Такой метод был применен на строительстве плотины во Франции и дал весьма положительные результаты. Было установлено, что выделение тепла при твердении шлакопортландцемента понизилось, что особенно ценно для массивного бетона.

Положительной особенностью шлакопортландцементов, в отличие от пуццолановых, является сравнительная воздухостойкость, обеспечивающая нормальное твердение бетона (железобетона) наземных сооружений. Это не исключает необходимости тщательного ухода за бетоном для защиты его от высыхания и пониженных температур в первые сроки твердения. Шлакопортландцемент обладает повышенной стойкостью против действия минерализованных вод (морской, сульфатной и др.). Однако по отношению к концентрированным растворам магнезиальных солей он недостаточно стоек. Свободные кислоты, содержащиеся в болотных, сточных промышленных и других водах разрушают бетон из шлакопортландцемента.

Шлакопортландцемент не оказывает корродирующего действия на заложенную в бетон стальную арматуру и достаточно прочно сцепляется с ней. Поэтому его можно применять в железобетонных конструкциях наравне с портландцементом. В отличие от портландцемента шлакопортландцемент в растворах и бетонах лучше сопротивляется действию повышенных температур, поэтому его можно применять после необходимого предварительного твердения во влажных условиях для некоторых строительных конструкций, эксплуатируемых в горячих цехах. Особенно хорошо влияет на твердение шлакопортландцемента тепло-влажностная обработка. Исследования показали, что пропаривание так интенсивно ускоряет процессы гидратации, кристаллизации и уплотнения структуры шлакопортландцемента, что получаемые растворы и бетоны приобретают высокие строительные свойства. Коэффициент использования активности цемента при пропаривапии достигает 70% против 60% для портландцемента; повышается трещиностойкость, морозостойкость, водонепроницаемость, водо- и солестойкость и улучшается ряд других свойств. Для получения шлакопортландцемента, предназначаемого для пропаривания, целесообразно применять клинкер, содержащий 55—60% C3S и 7—10% С3А при 40% гранулированного доменного шлака.

Шлакопортландцемент более универсальное вяжущее, чем пуццолановый, его можно эффективно применять для бетонных и железобетонных конструкций, наземных, подземных и подводных сооружений. Он особенно эффективен в крупных гидротехнических сооружениях, а также в сборных железобетонных конструкциях и изделиях, подвергающихся тепловлажностной обработке. Крупнейшие гидроэлектростанции на Днепре (Днепрогес, Каховская ГЭС и др.), на Енисее и др. возведены с применением шлакопортландцемента; он был широко использован для строительства предприятий черной металлургии и других отраслей тяжелой индустрии в Донбассе, на Урале, в Сибири, в Закавказье и др. Его успешно применяют в ряде районов для производства сборных железобетонных конструкций и изделий с применением пропаривания.


6. Белый портландцемент


Это продукт тонкого измельчения маложелезистого клинкера с необходимым количеством гипса при небольшой добавке диатомита. Клинкер получается в результате обжига до спекания (или плавления) маложелезистой сырьевой смеси надлежащего Состава, обеспечивающего преобладание в нем силикатов кальция. Охлаждается клинкер в определенных условиях, необходимых для его отбеливания. Гипс, активная и инертная минеральные добавки в измельченном состоянии должны иметь белизну, не ниже установленной для цемента данного сорта.

Белый портландцемент можно выпускать со стандартизованными поверхностно-активными пластифицирующими и гидрофобизующими добавками (в количестве не более 0,5% массы цемента), не снижающими белизну цемента. По степени белизны белый цемент подразделяется на три сорта: I, II, III.

Белый портландцемент выпускается марок 400 и 500 и должен удовлетворять всем другим требованиям, регламентированным стандартом на портландцемент. Очень важно, чтобы белый цемент был однородным по белизне и относился к одному сорту (в пределах каждой партии).

Разработанная С. С. Череповским и О. К. Алешиной технология производства белого цемента характеризуется следующими отличительными особенностями: исходные сырьевые компоненты должны со-' держать минимальное количество красящих оксидов железа, марганца, титана и др. Нужно исключить загрязнение сырья, полуфабриката, готовой продукции на всех технологических переделах. Клинкер обжигается на беззольном топливе. Несмотря на указанные меры по выходе из печи он все же имеет зеленоватый оттенок. Поэтому, чтобы придать ему высокую степень белизны, его после обжига подвергают специальной обработке — отбеливанию. Удельная поверхность белого цемента должна быть больше, чем у обычного портландцемента, так как при этом достигается большая равномерность и степень белизны. Опробование отбеливания проводилось вначале по' способу хлорирования, предложенному И. Я. Слободя-пиком. В сырьевую шихту вводились добавки хлористых солей, аммония, кальция и натрия. В результате взаимодействия с оксидами железа образуется треххлорное железо, возгоняющееся при высоких температурах обжига и легко удаляющееся с отходящими газами. Этот метод эффективен при мокром способе производства и высоком содержании оксида железа.

Необходимый для отбеливания слабовосстановительный газ заданного состава (содержание кислорода менее 0,2% и оксида углерода более 5%) получают путем сжигания генераторного газа в специальной камере сжигания, откуда он подается в герметически закрытый с выгрузочного конца отбеливающий холодильник. Клинкер из обреза печи непосредственно поступает в отбеливающий холодильник, где охлаждается до температуры не выше 473 К во избежание окисления. Положительные результаты, как показали исследования А. П. Зубсхина, получаются при обжиге клинкера в слабовосстановительной среде с последующим водяным отбеливанием. А. Н. Грачьян выявил эффективность двухступенчатого способа отбеливания. Клинкер на выходе из зоны спекания в течение 1 — 2 мин при 1673—1273 К охлаждается в конвертированном газе, затем направляется в водяную ванну. Конвертированный газ получают в результате взаимодействия при 1173—1273 К природного газа с водяным паром.

Оксид углерода и водород в момент образования обладают высокой активностью и оказывают сильное восстановительное действие на оксиды железа и марганца. Этим исследователям удалось добиться повышения белизны при водяном отбеливании в омагни-ченной воде, а также в растворах слабой концентрации соляной, серной и других кислот. Полагают, что при газовом или быстром водяном отбеливании маложелезистого клинкера повышение степени белизны является результатом снижения валентности оксидов железа, изменения координации красящих оксидов и соотношения алюминатных и силикатных фаз. Под действием фторидов высокоглиноземистый алюмофер-рит кальция приобретает метастабильность, что способствует образованию бесцветных кристаллов алюминатов кальция.

Сырьевые материалы для производства белого портландцемента — известняки и глинисто-песчаные породы с крайне ограниченным содержанием указанных красящих оксидов. По данным НИИЦемента, известняки по этому показателю подразделяются на два класса — А и Б; максимальное допустимое содержание в известняке оксида железа — 0,15% для класса А и 0,25%—для класса Б; соответственно содержание оксидов марганца в расчете на оксид марганца (II) — 0,015% и 0,03%. Применяемые для производства белого цемента местные известняки содержат не более 0,1% оксида железа; содержание оксида марганца в первом известняке достигает 0,018%; в араратском известняке марганца нет. В наиболее чистых карбонатных породах, используемых нашими цементными заводами для производства серого обыкновенного портландцемента, содержание оксида железа значительно выше и достигает 0,29%, а оксида марганца (II) — 0,039%. Это свидетельствует об ограниченных сырьевых возможностях производства белого цемента. Химический состав глинистого компонента, состоящего из каолина и кварцевого песка, а также используемой без корректировки полукислой глины, являющейся отходом при добыче огнеупорных глин на Лат-ненском месторождении, характеризуется следующими данными: Si02 —70—73%; А1203 — 18—20%; Fe2O3 — 0,4—1%; МnО —следы; силикатный модуль — 3,5—4 при глиноземном модуле, достигающем 40.

Подготовка, включая иногда и обогащение, сырьевых компонентов, их хранение, дробление, смешение и др. осуществляются особо тщательно, так как необходимо ограничивать предел колебаний их химического состава. Тонкое измельчение строго дозированной сырьевой шихты осуществляется как по мокрому способу, так и по сухому. При помоле сырьевой шихты очень важно предотвратить ее загрязнение присадкой металлического железа. При измельчении с помощью металлических шаров или цильпебса в мельницах с обычной металлической футеровкой присадка железа к сырьевой шихте доходит до 0,1 % - При окислении в процессе обжига это увеличивает содержание оксида железа в клинкере на 0,2%. Поэтому для помола сырьевой шихты нужно применять неметаллические мелющие тела, так называемые «уралитовые» (высокоглиноземистые). Сырьевые мельницы следует футеровать особо износоустойчивыми материалами из металлических сплавов либо блоками из кремнистых песчаников.

Сырьевую шихту составляют по заданным значениям коэффициента насыщения, силикатного и глиноземного модулей. При выборе этих показателей нужно учитывать, что из-за ничтожно малого содержания оксида железа в сырьевой шихте значительно повышается глиноземный модуль. Это вызывает резкое увеличение вязкости жидкой фазы, а температура ее образования превышает 1673 К, что существенно затрудняет обжиг и вызывает необходимость повышения температуры спекания клинкера до 1873—1923 К. В этих условиях особо эффективно применение минерализаторов обжига — фторидов, кремнефторидов, сернокислого кальция и др. К примеру, введение в сырьевую шихту кремнефтористого натрия ускоряет твердофазовые реакции и понижает температуру образования жидкой фазы до обычных для цементного клинкера ~1553 К. При этом вязкость жидкой фазы снижается и кристаллизация алита протекает без существенных затруднений. Весьма эффективным минерализатором, а также заменителем глинистого компонента являются шлаки-отходы производства фосфорных солей.

Состав сырьевой шихты рассчитывают так, чтобы получить клинкер с КН-0,85—0,88 при силикатном модуле 3,2—4,0. При этом обязательно применение минерализаторов. Вращающиеся печи футеруют талько-магнезитовым кирпичом либо магнезитовым огнеупором на шпинельной связке, при котором не наблюдается присадки окрашивающих оксидов к клинкеру. При помоле отбеленного высушенного клинкера либо охлажденного клинкера в него добавляют гипс и диатомит. Помол осуществляется в шаровых мельницах. В качестве мелющих тел используют шары из хромоникелевой стали либо из уралитовой керамики. Для интенсификации измельчения применяют ПАВ. Однако процесс тонкого измельчения белого цемента приводит к понижению белизны примерно на 5—7%. Применение для интенсификации помола белого цемента 0,1% подсолнечного соапстока позволило на Щуровском цементном заводе повысить производительность мельницы на 3% и степень белизны на 6% при снижении расхода электроэнергии на 25%.

 


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.