Меню
Поиск



рефераты скачать Виды износа режущего инструмента

Жидкости: водные растворы минеральных электролитов, эмульсии, растворы мыл; минеральные, животные и растительные масла; минеральные масла с добавлением фосфора, серы, хлора (сульфофрезолы), керосин и растворы поверхностно-активных веществ в керосине; масла и эмульсии с добавлением смазывающих веществ (графита, парафина, воска).

Газы и газообразные вещества: газы СО2, ССI , N2; пары поверхностно-активных веществ; распыленные жидкости (туман) и пены

Твердые вещества: порошки воска, парафина, петролатуна, битума; мыльные порошки.


Чаще всего при обработке резанием применяют смазочно-охлаждающие жидкости. Обладая смазывающими свойствами, жидкости снижают трение стружки о переднюю поверхность инструмента и задних поверхностей инструмента о заготовку. Одновременно снижается работа деформирования. Общее количество теплоты, выделяющейся при резании, уменьшается. Смазывающе-охлаждающие среды отводят теплоту во внешнюю среду от мест ее образования, охлаждая режущий инструмент, деформируемый слой и обработанную поверхность заготовки. Смазывающее действие сред препятствует образованию налипов металла на поверхностях инструмента, в результате чего снижается шероховатость обработанных поверхностей заготовки. Применение смазывающе-охлаждающих сред приводит к тому, что эффективная мощность резания уменьшается на 10-15%; стойкость режущего инструмента возрастает, обработанные поверхности заготовок имеют меньшую шероховатость и большую точность, чем при обработке без применения смазывающе-охлаждающих сред.

При черновой и получистовой обработке, когда требуется сильное охлаждающее действие среды, применяют водные эмульсии. Количество эмульсии, используемой в процессе резания, зависит от технологического метода обработки и режима резания и колеблется от 5 до 150 л/мин. Увеличивать количество подаваемой жидкости рекомендуют при работе инструментов, армированных пластинками твердого сплава, что способствует их равномерному охлаждению и предохраняет от растрескивания. При чистовой обработке, когда требуется получить высокое качество обработанной поверхности, используют масла. Для активизации смазочных материалов к ним добавляют активные вещества – фосфор, серу, хлор. Под влиянием высоких температур и давлений эти вещества образуют с металлом контактирующих поверхностей соединения, снижающие трение – фосфиды, хлориды, сульфиды. При обработке заготовок из хрупких металлов, когда образуется стружка надлома, в качестве охлаждающей среды применяют сжатый воздух, углекислоту.

Смазочно-охлаждающие среды по-разному подаются в зону резания. Наиболее распространена подача жидкости в зону резания через узкое сопло на переднюю поверхность инструмента под давлением 0,05-0,2 МПа. Более эффективно высоко-напорное охлаждение. В этом случае жидкость подают тонкой струей под давлением 1,5-2 МПа со стороны задних поверхностей инструмента. Весьма эффективным является охлаждение распыленными жидкостями – туманом, который подают со стороны задних поверхностей инструмента. В тех случаях, когда охлаждение режущего инструмента затруднено, используют подвод жидкости непосредственно в зону резания через полый режущий инструмент.

3. Подробно опишите процессы, протекающие при химико-термической обработки стали. Виды ХТО и область их применения.

Химико-термическая обработка - тепловая обработка металлов в различных химически активных средах с целью изменения химического состава и структуры поверхностного слоя металла, повышающих его свойства.

В зависимости от элемента, насыщающего поверхность заготовки, различают следующие виды обработки:

- цементацию,

- азотирование,

- цианирование,

- диффузионную металлизацию.

        

ЦЕМЕНТАЦИЯ - наиболее распространенный в машиностроении способ химико-термической обработки стальных деталей - применяется для получения высокой поверхностной твердости, износостойкостью и усталостной прочности деталей. Эти свойства достигаются обогащением поверхностного слоя низкоуглеродистой и нелегированной стали углеродом до концентрации эвтектоидной или заэвтектоидной и последующей термической обработкой, сообщающей поверхностному слою структуру мартенсита с тем или иным остаточным количеством остаточного аустенита и карбидов.

Глубина цементированного слоя обычно находится в пределах 0,5 - 2,0 мм (иногда для мелких деталей в пределах 0,1 - 0,3 мм, а для крупных - более 2,0 мм). Цементацию стальных деталей осуществляют в твердых, газовых и жидких карбюризаторах. За последние годы все большее развитие получает газовая цементация.

¨                Цементация в твердом карбюризаторе.

¨                Цементация в твердом карбюризаторе с нагревом током высокой частоты (далее т. в. ч.).

¨                Цементация в пастах.

¨                Цементация в пастах с нагревом т. в. ч.

¨                Газовая цементация.

¨                Высокотемпературная газовая цементация стали в печах.

¨                Цементация с нагревом т. в. ч.

¨                Ионная цементация.

¨                Газовая цементация кислородно-ацетиленовым пламенем.

¨                Цементация в жидкой среде.

¨                Цементация в расплавленном чугуне.


Как видно из приведенного списка видов цементации, их существует довольно много. Остановимся подробнее на газовой цементации, так как она используется довольно часто.

Газовая цементация.

Возможность цементации стали в газовой среде была показана еще в работе П. П. Аносова, выполненной в 1837 году. Однако только почти через сто лет (в 1935 г.) этот процесс начали впервые внедрять в производство в высокопроизводительных муфельных печах непрерывного действия на автозаводе им. Лихачева. При этом в качестве газового карбюризатора была использована среда, получаемая при пиролизе и крекинге керосина.

Для газовой цементации пока еще часто применяют шахтные муфельные печи и печи непрерывного действия с длинными горизонтальными муфелями из окалиностойкого сплава. Изредка применяют также печи с вращающимися ретортами. В последние годы начали получать все большее распространение безмуфельные печи непрерывного действия, нагреваемые излучающими трубками из стали Х23Н18 или Х18Н25С2.

Детали загружают в печи в поддонах (в корзинах) или в различных приспособлениях, на которых они располагаются на расстоянии 5 - 10 мм между цементуемыми поверхностями; мелкие детали загружают навалом на этажерки, помещаемые в корзины.

Для газовой цементации используют различные карбюризаторы - газы: природный (92 - 97% СН4); природный разбавленный для городских нужд (60 - 90% СН4); светильный (20 - 35% СН4, 5 - 25% СО): нефтяной (50 - 60% СН4): коксовый (20 - 25% СН4, 4 - 10% СО); сжиженные: пропан, бутан, пропано-бутановая смесь.

Сложные углеводороды, которые входят в состав карбюризаторов или образуются при из разложении в результате ряда промежуточных реакций, распадаются в основном до метана. При крекинге углеводородов, который производится для снижения их активности или получения эндогаза, образуется также СО. Таким образом, химизм выделения атомарного углерода при газовой цементации сводится  к распаду метана и окиси углерода.

СН4 = С + 2Н2.

2СО = СО2 + С.

Метан является более активным карбюризатором чем окись. Для науглероживания железа при 900-1000 0С в смеси СН4;-Н2 достаточно наличия всего лишь нескольких процентов метана, тогда как для цементации в смеси СО-СО2 необходима концентрация около 95-97% СО.

Свойства цементованной стали.

Оптимальное содержание углерода в поверхностной зоне цементованного слоя большинства сталей 0,8-0,9%C, при таком его количестве сталь обладает высокой износостойкостью. Дальнейшее увеличение содержание углерода уменьшает пределы выносливости и прочности стали при статических и динамических испытаниях. Однако наиболее износостоек цементованный слой при несколько повышенном содержании в нем углерода (по некоторым данным до 1,2% С). при этом после термической обработки цементованный слой должен иметь структуру мелкоигольчатого или скрытокристаллического мартенсита с мелкими глобулями карбидов и небольшим количеством остаточного аустенита.

Цементация повышает предел выносливости стали. Объясняется это, возникновением в слое остаточных сжимающих напряжений в связи с неодинаковым изменением объема слоя и сердцевины стали в процессе цементации и закалки. Наибольшее повышение предела выносливости достигается при цементации на сравнительно небольшую глубину, когда цементованный слой приобретает после закалки мартенситную структуру с минимальным количеством остаточного аустенита, в результате чего в слое  возникают максимальные сжимающие напряжения.


АЗОТИРОВАНИЕ - процесс диффузионного насыщения азотом поверхностного слоя заготовок, изготовленных из легированных сталей. Такие легирующие элементы, как алюминий, хром, молибден и др., при азотировании образуют с азотом твердые и стойкие химические соединения- нитриды.

Азотированию, как и цементации, подвергают детали, работающие на износ и воспринимающие знакопеременные нагрузки. Азотированные детали имеют следующие преимущества: высокую твердость, износостойкость, теплостойкость и коррозийную стойкость. Так как азотированию подвергают в основном легированные стали определенных составов и процесс имеет большую продолжительность (30-60 ч.), применение его оказывается экономически целесообразным лишь для обработки ответственных инструментов и деталей авиамоторов, дизелей, турбин, приборов и т. п.

Насыщаемость железа молекулярным азотом при атмосферном давлении и температуре до 1500 0С невелика, однако ее можно увеличить, создав в печи высокое давление (несколько сот атмосфер). Но этот способ насыщения железа азотом пока не представляет практического интереса ввиду его трудоемкости.

Для насыщения целесообразнее использовать атомарный азот, образующийся в момент разложения соединений, содержащих этот элемент. В качестве такого соединения обычно применяют аммиак, диссоциация которого сопровождается выделением азота в атомарном активном состоянии, который, однако, вскоре переходит в молекулярное состояние и теряет свою активность:

2NH3 = 2N + 6H

2N       N2

6H       3H2.

Поэтому азотирование интенсивно протекает лишь в том случае, когда диссоциация аммиака происходит в непосредственной близости  от азотируемой поверхности.

Свойства азотированной легированной стали.

Азотированный слой обладает высокой твердостью и износостойкостью. Износостойкость азотированной стали в 1,5-4 раза выше износостойкости закаленных высокоуглеродистых, цементованных, а также цианированных и нитроцементованных сталей.

Азотирование снижает вязкость стали, повышает ее прочность, ослабляет влияние концентраторов напряжений на снижение предела выносливости стали и существенно повышает предел выносливости, особенно тонких деталей и деталей, работающих в некоторых коррозионных средах.

Азотирование повышает сопротивление задираемости и налипанию металла под нагрузкой и особенно при повышенных температурах.

Азотированная сталь обладает теплостойкостью (красностойкостью), и ее твердость сохраняется после воздействия высоких температур. Например, сталь 38ХМЮА сохраняет свою твердость при нагреве до 500-520 0С в течение нескольких десятков часов. Еще большую устойчивость твердости против воздействия температур (до 600 0С) имеет аустенитная сталь. Однако при длительной эксплуатации в условиях высоких температур азотированный слой постепенно рассасывается, на поверхности образуются окислы и происходит глубокая диффузия кислорода по нитридным прожилкам, образующимся как в процессе азотирования, так и при длительном нагреве во время эксплуатации.

В результате азотирования коррозионная стойкость конструкционной стали (в среде воздуха, водопроводной воде, перегретом паре, слабых щелочных растворах) повышается и, наоборот, аустенитной хромоникелевой и нержавеющей хромистой стали некоторых марок понижается. Окалиностойкость последних сталей также понижается. Это объясняется тем, что в азотированном слое этих сталей из твердого раствора устраняется значительная часть хрома, входящего в состав образующихся нитридов. В аустенитной стали некоторых составов, например с малым содержанием никеля, это может сопровождаться даже выпадением в азотированном слое -фазы, в результате чего поверхностный слой становится слегка магнитным.

Азотированная сталь обладает высокой эрозионной стойкостью в потоках горячей воды и водяного пара.


ЦИАНИРОВАНИЕ заключается в одновременном насыщении поверхностей заготовок азотом и углеродом. Процесс цианирования может выполняться в жидкой и газовой среде. В зависимости от температуры цианирование подразделяется на  низкотемпературное (530-650) и высокотемпературное (800-930). При цианировании используются ядовитые вещества.

Для цианирования на небольшую глубину используют ванны составом:

№1    NaCN 20-25%, NaCl 25-50%, Na2CO3 25-50%, температура цианирования 840-870 0С, продолжительность процесса - 1ч.

№2    цианплав ГИПХ 9%, NaCl 36%? CaCl2 55%.

Реакции идущие в ванне №1:

2NaCN + O2 = 2NaCNO

2NaCNO + o2 = Na2CO3 + 2N + CO.

реакции идущие в ванне №2:

Ca(CN)2 = CaCN2 + C

CaCN2 + O2 = CaO + CO + 2N

2Ca(CN)2 + 3O2 = 2CaO + 4CO + 4N.

После цианирования непосредственно из ванны производится закалка.

Структура нитроцементованного и цианированного слоя.

При цианировании при 850-900 0С в цианистых ваннах, содержащих цианплав, и при глубоком цианировании при 900-950 0С в низкопроцентных ваннах с цианистым натрием и хлористым барием сталь с поверхности насыщается углеродом примерно до той же концентрации, что и при цементации, и лишь немного азотом. При цианировании в ванне №1 сталь насыщается углеродом несколько меньше, чем при цементации, а азотом в поверхностной зоне слоя больше, чем в других ваннах.

Низкотемпературная нитроцементация и цианирование.

Низкотемпературной нитроцементации и цианированию при 560-700 0С подвергаются стали различного назначения для повышения их поверхностной твердости, износостойкости, предела выносливости, теплостойкости и противозадирных свойств. Обычно такая обработка проводится при 560-580 0С, т. е. при температуре, которая немного ниже минимальной температуры существования  -фазы в системе Fe - N. Поэтому в процессе обработки при такой температуре на стали образуется, по существу, азотированный слой, а углерод проникает на глубину лишь нескольких микрон, где может образовываться тонкая карбонитридная зона.

Свойства нитроцементованной и цианированной стали.

Нитроцементованная и цианированная конструкционная сталь благодаря присутствию азота более износостойка, чем цементованная.

Нитроцементация и цианирование существенно повышают предел выносливости, причем нитроцементация в большей степени, чем цианирование, а в ряде случаев в большей степени, чем цементация.

При цианировании невозможно регулировать концентрацию азота и углерода в слое. Поэтому в цианированном слое количество остаточного аустенита всегда больше, чем в нитроцементованном.

В связи с этим сжимающие напряжения создаются в цианированном слое лишь на некотором расстоянии от поверхности, что приводит к снижению предела выносливости стали. Этим и объясняется меньшая долговечность цианированных деталей по сравнению с нитроцементованными.

При цианировании необходимо производить наклеп деталей дробью, создающий на поверхности (вследствие превращения остаточного аустенита в мартенсит) высокие напряжения сжатия. Усталостные испытания зубьев цианированных зубчатых колес на изгиб с циклической нагрузкой показали, что наклеп дробью повышает предел выносливости с 43 до 72 кГ/мм2.

Испытания на стенде показали, что после наклепа дробью стойкость (до разрушения) цианированных зубчатых колес увеличилась с 9 до 140 ч.

Сталь, подвергнутая нитроцементации и имеющая на поверхности тонкий нетравящийся карбонитридный слой (что бывает не всегда), корродирует медленнее нецианированной стали. Например, в 3%-ном растворе поваренной соли стойкость такой стали против коррозии в 2 раза выше, чем нецианированной. Коррозионная стойкость нержавеющих сталей после нитроцементации и цианирования снижается.


ДИФФУЗИОННАЯ МЕТАЛЛИЗАЦИЯ - это процесс насыщения поверхностного слоя заготовок различными химическими элементами при совместном их нагревании и выдержке. В зависимости от используемого элемента процессы металлизации получили названия: алитирование, хромирование и т. д.

Диффузионная металлизация может выполняться в твердых, жидких и газообразных средах. Этот процесс обеспечивает повышение твердости, коррозионной стойкости, жаростойкости и износостойкости поверхностей деталей.

Основным недостатком диффузионной металлизации является малая глубина металлизированного слоя (0.2-0.4 мм) при относительно большой длительности процесса.



Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.