Меню
Поиск



рефераты скачать Химическая физика и некоторые проблемы биологии

Химическая физика и некоторые проблемы биологии

Министерство образования и науки Украины

Государственная Летная Академия Украины










Доклад по физике на тему:

«Химическая физика и некоторые проблемы биологии»





Выполнили:

курсанты  662 группы

Лишавская Виктория

Качанова Юлия


Проверил: заведующий

кафедры физ.-мат.

наук Бурмистров А.Н.




КИРОВОГРАД  2007

ПЛАН


1.Введение;

2.Кинетика опухолевого роста:

          2.1.Модели для решения проблемы;

          2.2.Формы представления результатов;

      2.3.Кинетичесские исследования опухолевого роста;

3.Свободние радикалы и рак:

      3.1.Факторы возникновения;

      3.2.Опыты;

      3.3. Канцерогенны;

  4. Лучевое повреждение. Защита от лучевого поражения:

           4.1. Кинетический подход;

           4.2. Метод ЭРП;

  5. Геронтология. Причины и природа старения;

            5.1.Древнее объяснения причин старения;

   6. «Vis vitalis» («жизненная сила»);

   7.Теории и гипотезы;

          7.1.Механистическо-материалистическая теория:

          7.2.Физико-химические гипотезы;

          7.3.Химико-биологическая теория старения;

    8. Заключение;

    9. Литература.

Химическая физика и некоторые проблемы биологии

В наши дни на решение важных проблем биологии и медицины направлены объединенные усилия химической и биологической физики. Особое место среди биологических процессов занимают заболевания, влияние вредных воздействий физических и химических факторов окружающей среды, старение живых организмов.

   Биофизика  –  это  наука,  изучающая  физические  и  физико-химические процессы,  протекающие  в  биосистемах  на  разных  уровнях  организации   и являются основой физиологических актов. Возникновение  биофизики  произошло, как прогресс в физике, вклад внесли математика, химия и биология. Живые организмы – открытая, саморегулирующаяся, самовоспроизводящаяся и развивающаяся гетерогенная система, важнейшими функциональными  веществами в которой  являются  биополимеры: белки  и  нуклеиновые  кислоты  сложного атомно-молекулярного строения.


Кинетика опухолевого роста


Около двух десятилетий назад в СССР было широко развёрнуто кинетическое изучение развития различных биологических процессов, в первую очередь – злокачественного опухолевого роста.

Перевиваемые опухоли и лейкозы животных являются моделями для постановки решения ряда проблем лечения рака человека. Кинетические исследования экспериментальных опухолей дают возможность количественно изучать закономерности их развития, как в отсутствии лечения, так и при различных терапевтических воздействиях, предлагать количественные критерии эффективности этих воздействий, разрабатывать оптимальные методы лечения.

Основной формой представления результатов кинетических исследований является кинетическая кривая – графическое изображение изменения во времени некоторых величин Ф, характеризующей развитие процесса. В качестве величины Ф обычно рассматривают любую характеристику, которую можно измерить и выразить количественно для каждого момента времени. Применительно к онкологии под Ф можно подразумевать вес, объем, диаметр опухоли, число опухолевых клеток и т.д.

Развитие опухолевого процесса в каждый момент характеризуется значением скорости W , величина которой также меняется во времени:

W(t)=dФ(t)/dt

Удельная скорость роста опухоли равна

γ(t) =1dФ(t)/dt=dФ ln (t)/dt

Развитие экспериментальных опухолей описывается различными типами кинетических зависимостей – экспоненциальной, степенной, S-образной.

Практически все известные экспериментальные опухоли на начальной стадии растут по экспоненциальному закону. На рисунке приведены данные о кинетике развития 5 перевиваемых опухолей разного происхождения и локализации:

                

По мере развития опухолей влияние различных факторов может приводить к отклонению от экспотенциальной зависимости. Во многих случаях скорость роста сначала возрастает, достигает максимального значения (перегиб на кривой), затем рост опухоли затормаживается. Величина Ф при этом асимптотически приближается к предельному значению Ф∞. Кинетические кривые имеют в этих случаях S-образный характер, и в зависимости от положения точки перегиба, описываются уравнением автокализа (логистической функцией).

Кинетические исследования позволяют вывести количественные критерии оценки эффективности терапевтических воздействий. В экспериментальной онкологии используют различные критерии, основанные на знании и сравнении кинетических параметров роста опухолей в опыте и в контроле.

В общем случае при действии химиотерапевтического препарата форма кинетической кривой может изменятся. При этом объективное сравнение кинетических кривых возможно, если использовать в качестве количественной характеристики процесса среднюю удельную скорость. На рисунке показаны кривые торможения роста веса селезёнки у мышей с лейкозом.

Для случаев, когда процесс и в контроле и в опыте соответствует экспотенциальному закону, этот критерий имеет простой вид:

X=γ/γ

где  γ  - значение удельной скорости для контрольной группы животных,

       γ  - для животных, получающих лечение.


Свободные радикалы и рак

В течение последних двух десятилетий разными исследователями высказывались соображениями, что воздействия на организм физических и химических агентов могут рассматриваться с позиции образования в организме свободных радикалов, не свойственных ему в нормальном состоянии. Одним из наиболее очевидных факторов подобного рода является действие ионизирующей радиации и света. Воздействие проникающих излучений на живой организм, сводящиеся конечном счете к образованию свободных радикалов и атомов, способно вызвать лучевой рак и лейкоз. То же относится и к действию некоторых канцерогенных веществ, где канцерогенность связывается с образованием свободных радикалов.

Парамагнитные частицы – свободные радикалы и комплексы ионов переходных металлов в парамагнитной форме – обнаружены в настоящее время во многих тканях животных и растительных организмов при  их нормальном функционировании. Они регистрируются методом электронного парамагнитного резонанса (ЭПР). На рисунке показан характерный спектр ЭРП клеток печени. Каждый сигнал в спектре характеризирует так называемого g-фактор.Спектр ЭРП заторможенной ткани печени крыс (сплошной линией) и опухоли печени (пунктир).

Предположение об интенсификации (стимулировании) свободнорадикальных процессов при развитии опухолей было подтверждено прямыми опытами в 1966г. До этого времени попытки применить метод ЭРП в онкологии приводили к противоречивым результатам. Кинетический подход позволил установить, что изменение содержание свободных радикалов в ткани опухоли в процессе её роста носит экстремальный характер. Впервые это было показано на примере лейкоза La у мышей.

В селезёнке мышей на начальных стадиях развития лейкоза La наблюдалось увеличение содержания свободных радикалов, достигавшее максимума примерно к 4-м суткам. Это изменение обнаруживалось раньше появления других признаков лейкоза. Максимум на кинетической кривой содержания радикалов совпадал с началом регистрируемых изменений в весе селезёнки. На 5-6 сутки начиналось уменьшение количества радикалов, которые к моменту гибели животных падало ниже нормы.

В настоящее время в лаборатории методами ЭРП и привитой сополимеризации в кинетическом аспекте изучено около 20 типов экспериментальных опухолей. Во всех случаях характер изменения концентрации свободных радикалов в опухолевой ткани подобен описанному выше. Наличие этого биофизического сдвига навело на мысль о возможности использовать его для целей ранней диагностики рака. Однако эта идея пока не получила практической реализации.

Изучение содержания свободных радикалов в лейкоцитах крови при лейкозах и в опухолевых тканях при развитии рака человека показало, что экстремальный характер изменения концентрации радикалов имеет место и в этих случаях.

Прогресируюшее течение лейкозов характеризуется увеличением содержания свободных радикалов в лейкозах до момента, соответствующего началу быстрого нарастания в организме дистрофических изменений. В этот период количество радикалов в лейкоцитах до момента начинает быстро уменьшатся. Можно предположить, что рост концентрации свободных радикалов свидетельствует об увеличении содержания в крови лейкозно-измененных клеток, то есть характеризирует лейкозную трансформацию кровотечения.

При химиотерапии содержание свободных радикалов в лейкоцитах снижается. Однако, несмотря на наступление состояния клинико-гематологической ремиссии, уровень радикалов в лейкоцитах в большинстве случаев остается выше значения, характерного для здоровых клеток. По-видимому, это связано с сохранением в периферической крови некоторого количества лейкозно измененных клеток.

Снижение уровня свободных радикалов в лейкоцитах при химиотерапии наблюдается раньше, чем уменьшение общего числа лейкоцитов в периферической  крови. Можно думать, что изучение содержания свободных радикалов может также стать одним из методов контроля за развитием заболевания и ходом лечения.

Таким образом, характер изменения содержания свободных радикалов при развитии экспериментальных опухолевых процессов и при раке и лейкозах человека является достаточно общим.

Свободнорадикальные сдвиги обнаружены также при кинетическом изучении парамагнитных свойств тканей животных в процессе химического канцерогенеза. Так, в печени крыс в процессе малигнизации под действием диэтилнитрозамина (ДЭНА) имеет место характерные стадийные изменения в содержании свободных радикалов. Практически сразу же после введения канцерогенна наблюдается закономерное снижение содержания радикалов по сравнению с количеством их, характерным для нормы. Затем их концентрация возрастает. Первый максимум наблюдается примерно через месяц после начала опыта. В этот период еще отсутствуют какие-либо регистрируемые морфологические признаки малигнизации. В дальнейшем наблюдается их уменьшение почти до нормы, а затем – период длительного повышения содержания свободных радикалов, которые достигают максимума около 110 суток. Этот период гистологически соответствует  началу формирования опухоли. Максимальное значение концентрации свободных радикалов обнаружены в сравнительно небольших опухолевых узелках. По мере дальнейшего формирования опухолей концентрация свободных радикалов снижается до значений ниже нормы, что находится в полном ответствии с приведёнными выше данными о биофизических сдвигах свободнорадикального характера на начальных стадиях опухолевого роста.

Аналогичные изменения наблюдаются при канцерогенезе под действием некоторых других химических веществ. Результаты большого числа экспериментов показали, что кинетические кривые изменения концентрации радикалов в тканях и клетках в процессе вирусного, химического и спонтанного канцерогенеза имеют много общих черт, несмотря на различную природу вызывающих этот процесс агентов.

В дальнейшем антиканцерогенное действие ингибиторов радикальных процессов было подтверждено в ряде работ другими авторами. Так, американским исследователем Уотенбергом в 1972 году было изучено антиканцерогенное действие ионола, бутилоксианизола и этоксиквина при развитии канцерогенеза под влиянием бензопирена 7, 12-диметилбензантрацена (ДМБА). Оказалось, что фенольные антиоксиданты тормозят развитие опухолей преджелудка мышей и молочной железы крыс. Аналогичное действие бутилоксианизола наблюдалось в случае рака легких у мышей, возникающего при введении в пищу ДМБА, бензапирена, утретана в острых опытах и при хроническом введении канцерогенов.

Были изучены молекулярные аспекты этой весьма важной проблемы. Обнаружено, что введение ионала совместно с канцерогеном (ДАБ) снимает эффект увеличения концентрации свободных радикалов на стадии формирования опухоли, сохраняя её на уровне, близком к соответствующему уровню в нормальной ткани печени. Опухоли у животных, получивших дибунол, не возникают в течение более 12 месяцев наблюдения.

Одновременно в этих опытах наблюдали за изменением содержания в клетках печени цитохрома Р-450.

Под действием одного ДАБ уровень цитрохрома Р-450 увеличивался в 2,5 раза, в то время как при одновременном использовании ДАБ и ингибитора он возрастал почти в 6 раз и удерживался на этом уровне, на протяжении длительного времени. Очевидно, дибунол является активным индуктором синтеза цитохрома Р-450 в микросомах печени и может приводить к нейтрализации канцерогенеза.

Лучевое повреждение биологически важных макромолекул и защита от лучевого поражения


Кинетический подход оказался весьма перспективным при изучении механизма повреждающего действия излучения на важные биологические макромолекулы – белки, липиды, ферменты, нуклеиновые кислоты. Большое внимание было уделено исследованиям изменения физико-химических свойств ДНК при действии ионизирующего излучения, ультрафиолетового света и др. Для изучения молекулярных  механизмов повреждения нуклеиновых кислот использовались различные физические и химико-физические методы – инфракрасная спектроскопия, метод ЭПР в сочетании с методом спиновых меток, хемилюминесценция, электронная микроскопия и т.д.

Под действием на молекулы ДНК малых доз облучения обнаружены конформационные нарушения. При увеличении доз радиации появлялись одиночные и двойные разрывы молекул и различные химические изменения.    При еще более высоких дозах длинные линейные молекулы превращались в короткие обрывки и клубки.

В соответствии с гипотезой о важной роли свободных радикальных процессов в функционировании клетки  и в развитии различных патологических состояний было высказано предположение, что воздействие ионизирующей радиации приводит к образованию свободнорадикальных состояний химических компонентов клетки, которые могут вызвать биохимические процессы, не свойственны живому организму в норме.

Развитие свободнорадикальных реакций в организме должно приводить к уменьшению количества тканевых ингибиторов, что, в свою очередь нарушает способность организма к правильной регуляции биохимических процессов. Подобное нарушение может быть одной из причин возникновения сдвигов, свойственных лучевой болезни.

Образование свободных радикалов при облучении  как самих молекул ДНК, так и соединений, моделирующих  отдельные фрагменты макромолекулы, было доказано экспериментально с помощью метода ЭРП. Получены кинетические кривые накопления радикалов ДНК при облучении замороженных водных растворов, установлен сложный механизм образования и дальнейших превращений радикалов в ДНК. Изучение спектров электронного парамагнитного резонанса ДНК, углеводов и азотистых оснований  позволило сделать вывод, что при облучении образуются свободные радикалы. Продукты окисления этих радикалов  превращаются в гидроперекиси, которые могут распадаться с образованием новых радикалов, инициируя, таким образом, дальнейшее развитие нежелательных процессов повреждения. Процесс распада молекул гидроперекисей ДНК сопровождается свечением – хемилюминесценцией, которая  обычно возникает в таких реакциях при рекомбинации радикалов. Из кинетического анализа следует, что интенсивность хемилюминесценции линейно зависит от концентрации гидроперекисей ДНК. Такая же зависимость наблюдается и на опыте.

В связи с активной ролью свободных радикалов ролью свободных радикалов в лучевом повреждении молекул ДНК было предложено в этом случае использовать в качестве защитных средств ингибиторы радикальных реакций. Наиболее эффективно радиопротекторами оказались произвольные галловой кислоты, 3-оксипиридна и фенилэтиламина. При добавлении  этих соединений в раствор ДНК перед облучением эффект защиты достигает 80-90 %.

Установлены некоторые аспекты молекулярного механизма действия ингибиторов как  радиопротекторов. При добавлении до облучения они могут взаимодействовать с первичными радикалами, возникающими при облучении, предотвращая развитие процесса повреждения. При введении после облучения они могут реагировать с радикалами, образующими при распаде вторичных продуктов, например гидроперекисей, и ингибировать дальнейшие реакции.

Ингибиторы-антиоксиданты оказались эффективными радиопротекторами и в опытах с животными (мышами). С их помощью удалось обеспечить выживаемость до 60% мышей, облучённых смертельными дозами. При этом, чем выше антирадикальная активность ингибитора, тем выше процент оставшихся в живых мышей.

Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.