Меню
Поиск



рефераты скачать Формирование поездов

Формирование поездов

Задача 1

Статистический анализ плана формирования поездов


На заданном участке полигона сети железных дорог (рис. 1.1) составить варианты плана формирования поездов и провести их статистический анализ с использованием теории вероятностей.









 А Б В Г


Рис. 1.1. Схема Участка АГ


Исходные данные:

Вагоно-часы простоя под накоплением сm:

на станции А – 900 вагонов-ч;

на станции Б – 800 вагонов-ч;

на станции В – 900 вагонов-ч.

Экономия от проследования станции без переработки Тэк:

на станции Б – 4,5 ч;

на станции В – 3,5 ч.

Среднеквадратическое отклонение вагонопотоков σ = 75 вагонов.

Параметр «а» в равномерном распределении = 60 вагонов.

Среднесуточные вагонопотоки в назначении:

АГ – 150 вагонов;

АБ – 28 вагонов;

АВ – 30 вагонов;

БГ – 300 вагонов;

БВ – 50 вагонов;

ВГ – 0 вагонов;

Законы распределения вагонопотоков в назначении:

АГ – равномерное распределение;

БГ - нормальное распределение.


Решение:

Представим ступенчатый график вагонопотоков на рис. 1.2.

А Б В Г

сm

900

800

900

 




  4,5 3,5












 







Рис. 1. 2. Схема участка АГ и ступенчатый график вагонопотоков


Величины  есть средние значения вагонопотоков. Назначение ВГ отсутствует по условию.

Известным условием выделения струи вагонопотока в самостоятельное назначение является удовлетворение её неравенству:

 (1.1)

где  - мощность струи вагонопотока со станции i назначением на станцию J;

 - экономия от проследования без переработки сортировочных станций, расположенных между станциями назначения данной струи и более ближней смежной струи i – 1;

с - параметр накопления вагонов в сортировочном парке на составы грузовых поездов;

m - среднее число вагонов в составах грузовых поездов.

Из формулы (1.1) следует, что выделение данной струи потока в самостоятельное назначение будет эффективно во всех случаях, когда

. ( 1.2 )

Но вследствие колебаний потока мощность струи может уменьшится до величины

. ( 1.3 )

При этом она, очевидно, перестаёт удовлетворять необходимому и достаточному условиям выделения. Вероятность её появления в отдельные j-е сутки, а также вероятность появления струи, удовлетворяющей условию ( 1.2 ), может быть определена при известной функции распределения.

Для струи N1 соответствие достаточному условию начинается с величины потока:

 вагонов

Необходимому условию соответствует поток:

 вагонов.

Для струи N4 необходимое и достаточное условия совпадают:

 вагонов.

По условию средние значения вагонопотоков N1 = 150 вагонов, N4 =300 вагонов, следовательно, струя N1 удовлетворяет необходимому и N4 удовлетворяет достаточному условию, а остальные, даже будучи объединены, не удовлетворяют и необходимому (N2 = 28 вагонов, N3 = 30 вагонов, N5 = 50 вагонов ).

Оптимальный план формирования по средним значениям потоков N1÷N5 представим на рис. 1.3.

А Б В Г

N2+N5

 


Рис. 1.3.1 вариант оптимального плана формирования поездов


Рассмотрим теперь полигон с учётом суточных колебаний вагонопотоков. Очевидно, что достаточно располагать информацией о колебаниях двух струй потока N1 и N4.

Определим вероятности сохранения оптимальности приведённого на рис. 1.3 варианта при изменениях потоков, а также вероятности сохранения других оптимальных планов формирования поездов.

Суточные значения струи N1 распределены равномерно с параметрами  вагонов, а = 60 вагонов.

Известно, что математическое ожидание случайной величины х, равномерно распределенной на участке от а до b:

. ( 1.4 )

Из формулы ( 1.4 ) найдём параметр b:

b=2*M[x]-a=2*150-60=240 вагонов.

Назначение АГ со струёй N1 будет, очевидно, эффективно для значений Nij от 113 вагонов и более (верхний предел по условию распределения – 240 вагонов, вероятность эффективности при Nij >240 равна нулю ). Вероятность этого события для равномерного распределения определим по формуле:

. ( 1.5 )

.

Суточные значения струи N4 распределены по нормальному закону с параметрами  =300 вагонов и σ =75 вагонов.

Вероятность попадания случайной величины на участок от  до  рассчитывается по формуле:

 ( 1.6 )

Вероятность появления суточных размеров струи N4j≥229 вагонов, распределённой по нормальному закону распределения, рассчитаем следующим образом:

P(N4j≥229)=1-Ф((229-300)/75)=1-Ф(-0,95)=1-0,1711=0,8289.

Расчёты показывают, что по отдельности выделение струй N1 и N4 в самостоятельные назначения эффективно в большинстве случаев ( соответственно из 100 дней для N1 – в 71 день, а для N4 – в 83 дня ). Однако в целом вероятность сохранения оптимального плана, показанного на рис. 1.3, будет ниже и составит:

P1=P(N1j≥113) P(N4j≥229)=0.7056*0.8289=0.5849.

Рассмотрим, что произойдёт, если вагонопотоки N1j и N4j примут значения, меньше критических (соответственно 113 и 229 вагонов).

Сперва рассмотрим более короткое назначение БГ с потоком N4. Вероятность для N4j стать менее 229 вагонов в сутки составляет:

P(N4j<229)=1-P(N4j≥229)=1-0.8289=0.1711.

При этом по-разному складывается положение с назначением АГ. Оно может сохраниться с вероятностью 0,5323. В этом случае оптимальным будет вариант плана формирования II, показанный на рис. 1.4.

Г

 

N4

 

N2+N3

 

N2+N4+N5

 
 

Рис. 1.4. II вариант оптимального плана формирования поездов


Вероятность того, что такой вариант будет оптимальным:

PІІ=P(N1j≥113) P(N4j<229)=0.7056*0.1711=0.1207.

Если же оба потока будут меньше своих критических значений, то оптимальными могут быть два варианта. Так, при N1j + N4j < 229 план формирования не будет иметь ни одного сквозного назначения ( вариант III, рис. 1.5 ).

Рис. 1.5. III вариант оптимального плана формирования поездов


Вероятность ІІI варианта посчитаем следующим образом.

Допустим N1j=X и N4j=Y. Тогда вероятность совмещения событий N1j+N4j<229 может быть уподоблена вероятности попадания точки M(X,Y) в определённую площадь, ограниченную осями координат и прямой с уравнением X+Y=229 (рис. 1.6), при известных законах распределения координат X и Y. Для этого треугольник Oab разбивается на элементарные прямоугольники со сторонами, параллельными осям координат.

Вероятность попадания точки в первый прямоугольник  с (площадь треугольника, не попадающего в область допустимых значений, равна площади треугольника abo,) равна произведению вероятностей 0<X1<39 и 0<Y1<209,5. При этом, так как параметр X распределён по равномерному закону на отрезке (60; 240), то вероятность в данном случае равна 0.

P1=0

Вероятность попадания точки во второй прямоугольник равна произведению вероятностей 39<X<77 (учтём, что при X<60 вероятность первого множителя нулевая, поэтому нижний предел в данном случае 60 вагонов ) и 0<Y<171:

P2=[(77-60)/(240-60)]*[Ф((171-300)/75)-Ф((0-300)/75)]=

=0.0944*[Ф(-1,72)-Ф(-4)]= 0,0944*(0,0427-0)=0,0040.


Y

229


a







b,

190

 o,

b,, 209.5

a,







152


171






114



133





76




95




38





57








19

B

O 39 77 115 153 191 229 X


Рис. 1.6. Замена площади треугольника площадью ряда прямоугольников для определения вероятности попадания точки M(X,Y) в треугольник Oab, ограничённый осями координат и отрезком прямой X+Y=229

Рассчитаем аналогично другие составляющие вероятности попадания точки M(X,Y) в площадь, ограниченную осями координат и прямой с уравнением X+Y=229:

Р3=[(115-77)/(240-60)]*[Ф((133-300)/75)-Ф((0-300)/75)]=

=0.2111*[Ф(-2,23)-Ф(-4)]=0.2111*(0.0139-0)=0.0029.

P4=[(153-115)/(240-60)]*[Ф((95-300)/75)-Ф((0-300)/75)]=

=0.2111*[Ф(-2,73)-Ф(-4)]=0.2111*(0.0035-0)=0.0007.

P5=[(191-153)/(240-60)]*[Ф((57-300)/75)-Ф((0-300)/75)]=

=0.2111*[Ф(-3,24)-Ф(-4)]=0.2111*(0.0006-0)=0.0001.

P6=[(229-119)/(240-60)]*[Ф((19-300)/75)-Ф((0-300)/75)]=

=0.2111*[Ф(-3,75)-Ф(-4)]=0,2111*(0,0001-0)=0.

Суммарная вероятность попадания точки M(X,Y) в треугольник равна сумме вероятностей её попадания в отдельные прямоугольники:

РIII= Р1+ Р2+ Р3+ Р4+ Р5+ Р6= 0+0,0004+0,0029+0,0007+0,001+0=0,0077.

Г

 
По теореме полной вероятности (сумма всех вероятностей наступления событий равна единице) можно посчитать вероятность IV варианта оптимального плана формирования поездов, когда каждый в отдельности из потоков N1j и N4j меньше своих критических знаний, но в сумме N1j+N4j>229, то есть больше критического значения для назначения поездов БГ ( рис. 1.7 ).

N1+N4

 

Рис. 1.7. IV вариант оптимального плана формирования поездов


Вероятность IV варианта:

РIV = 1-( РI + РII + РIII ) = 1-( 0,5849 + 0,1207 + 0,0077 ) = 0,2867.

На основании проведённого статистического анализа плана формирования поездов можно сделать следующие выводы.

Первый вариант плана формирования поездов, рассчитанный по средним значениям вагонопотоков, будет оптимальным 213 дней ( 0,5849*365 = 213 ), то есть больше половины года. Несколько меньше трети года – 105 дней – будет выгодно применение четвёртого варианта плана формирования ( 0,2867*365 = 105 ). В остальные дни с вероятностью 0,1207 выгодно применение второго варианта плана формирования ( 44 дня ); с вероятностью 0,0077 – третий вариант ( 3 дня ). Это означает, что для соблюдения оптимального режима работы по организации вагонопотоков на полигоне АГ целесообразно иметь двухвариантный план формирования поездов ( I и IV варианты ).

Зная критические значения вагонопотоков, необходимо организовать их суточный прогноз и в соответствии с ним строить работу по формированию поездов.

Задача 2

Имитационное моделирование входящего на станцию поездопотока


Исходные данные:

Часовая интенсивность поступления поездов на станцию - 5 поезд/час.

Параметр Эрланга в распределении интервалов между прибытием поездов на станцию - 3.

Доля грузовых поездов, поступающих в расформирование - 30%.

Процентное соотношение числа грузовых поездов, поступающих с направлений:

А - 18%;

Б - 22%;

В - 28%;

Г - 32%.

Среднее число вагонов в составах грузовых поездов - 48 вагонов.

Среднеквадратическое отклонение числа вагонов в составах грузовых поездов - 15 вагонов.

В настоящей задаче требуется смоделировать:

·                   интервалы между прибытием поездов на сортировочную станцию (и на их основе разработать график поступления грузовых поездов в течение суток);

·                   направления, с которых прибывают поезда;

·                   категории поступающих поездов (транзитные грузовые с переработкой и транзитные грузовые, проходящие станцию без переформирования);

·                   величины составов прибывающих грузовых поездов (число вагонов).

Решение:

Сведения о значении порядка распределения Эрланга, который является величиной, обратной квадрату коэффициента вариации интервалов между поступлением поездов на станцию, а также об интенсивности поездопотока позволяют с помощью таблицы случайных чисел смоделировать эти интервалы по формуле:

Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.