Меню
Поиск



рефераты скачать Судовые установки

В АСР дизель-генераторов устанавливают однорежимные регуляторы, обеспечивающие поддержание заданной частоты вращения вала и частоты тока в электрической сети в пределах допускаемой статической неравномерности, а включают их в работу по всережимной схеме.

Видом потребителя механической энергии и требованиями, предъявляемыми к качеству его работы, определяются требования к точности поддержания частоты вращения вала ДВС. Согласно. ГОСТ 10511—72 АСР с регуляторами прямого и непрямого действия делятся по точности на четыре класса.

Первый класс точности АСР обеспечивается однорежимпыми. регуляторами двухимпульсными (ОРД), устанавливаемыми на ДГ переменного тока с повышенными требованиями к качеству регулирования. На транспортных судах ОРД распространения пока не получили.

На ДГ судовых электростанций устанавливаются одноимпульс-ные однорежимные регуляторы непрямого действия (ОРН), обеспечивающие 2-й и 3-й классы точности АСР, либо однорежимные регуляторы прямого действия (ОРП), обеспечивающие 3-й и 4-й класс, точности АСР. Для каждого класса точности АСР установлены предельные значения динамического заброса частоты вращения от начальных значений по на установившемся режиме и длительности переходного процесса Тпп при полном мгновенном сбросе или уве­личении нагрузки, а также нестабильности частоты вращения v.

Регуляторы ОРП и ОРН должны обеспечивать возможность установки степени неравномерности АСР в пределах не уже 2—4%.

АСР ГД с всережимными регуляторами непрямого (ВРН) и прямого (ВРП) действия должны обеспечивать динамический заброс частоты вращения не более 18% и длительность переходного процесса не более 10 с при мгновенном сбросе нагрузки. Нестабильность АСР при номинальной уставке задания ВРН или ВРП (т. е. при работе АСР по номинальной регуляторной характеристике) должна отвечать требованиям 3-го и 4-го классов точности, а степень неравномерности АСР не должна превышать 12%. Эти же требования предъявляются к АСР Регистром.

Вопрос 6. Судовые холодильные установки, их классификация по принципу работы и холодильному агенту. Определить холопроизводительность установки.


Ответ


Рассмотрим назначение, холодильных установок на судах различного типа.


Сохранение и обработка пищевых продуктов.


Холодильные машины наиболее широко применяются для сохранения пищевых продуктов при их перевозке на транспортных рефрижераторных судах, грузовые трюмы которых снабжены тепловой изоляцией и охлаждающими устройствами. Имеется также значительное количество судов, на которых только часть грузовых помещений оборудована под рефрижераторные перевозки. Для сохранения пищевых продуктов, предназначенных для питания команды и пассажиров, на всех судах, совершающих продолжительные рейсы, оборудуются специальные провизионные камеры с искусственным охлаждением. На многих судах рыбопро­мыслового флота холодильные машины используются не только для сохранения продуктов промысла, но и для их охлаждения или замораживания (траулерах, плавбазах, китобазах и т. д.).

Остановимся кратко на консервирующем действии холода и оптимальных условиях перевозки скоропортящихся грузов. Наиболее совершенный вид консервации, пригодный для любого скоропортящегося продукта,— его охлаждение или замораживание. При понижении температуры значительно замедляется развитие микроорганизмов и распад составных частей продуктов: белков, жиров и углеводов. Кроме того, охлажденные или замороженные пищевые продукты наилучшим образом сохраняют свои питательные и вкусовые качества, а также витамины.

При охлаждении пищевые продукты не доводятся до крио-скопической температуры, т. е. температуры замерзания соков, находящихся в их тканях.

При замораживании температура продукта понижается настолько, что все соки или часть их превращаются в кристаллы льда. Замораживание — более эффективный способ консервации, чем охлаждение;- позволяет хранить и перевозить груз в течение продолжительного времени. Это объясняется не только тем, что продукт приобретает более низкую температуру, но и тем, что благодаря превращению соков в кристаллы льда продукт как бы обезвоживается. Эти два обстоятельства в значительной мере препятствуют развитию бактерий.

Однако процесс замораживания продуктов не всегда обратим с процессом оттаивания (дефростацией). Некоторые продукты после дефростации не восстанавливают своих первоначальных качеств. Например, яйца не подвергаются замораживанию и пе­ревозятся только в охлажденном состоянии.

Кроме температуры, на сохранность грузов большое влияние оказывает относительная влажность воздуха в охлаждаемых помещениях. При пониженной влажности воздуха замедляется развитие бактерий, но вместе с тем происходит значительная усушка большинства скоропортящихся грузов. Усушка не только связана с потерей веса, но зачастую приводит к снижению питательных свойств и ухудшению внешнего вида продукта.

Повышенная влажность способствует, даже при весьма низких температурах, развитию бактерий, а также интенсивному образованию плесени на поверхности продуктов и деревянной внутренней зашивке трюмов. Поэтому выбор величины влажности воздуха для охлаждаемых трюмов — весьма существенный вопрос. С плесенью и грибками борются обычно дезинфекцией и вентиляцией охлаждаемых помещений. Вообще искусственная вентиляция грузовых трюмов рефрижераторных судов жела­тельна при перевозке почти всех грузов как один из эффективных методов борьбы с посторонними запахами.

Некоторые грузы подлежат обязательной вентиляции: к ним в первую очередь следует отнести фрукты и овощи, которые при хранении выделяют значительное количество углекислоты.

На сохранность груза влияет также циркуляция воздуха, обеспечивающая более равномерное распределение температуры и влажности воздуха в трюмах и препятствующая образованию зон, в которых может скапливаться затхлый воздух Интенсивность естественной циркуляции воздуха в трюме зависит от многих факторов, например, от высоты трюма, системы охлаждения, размещения охлаждающих батарей и т. д. На интенсивности циркуляции воздуха сказываются также способы укладки груза и погрузочные нормы. При очень высоких погрузочных нормах, или погрузочной плотности, трудно обеспечить нормальную циркуляцию воздуха.

В связи с необходимостью вентиляции охлаждаемых помеще­нии и интенсивной циркуляции воздуха в них применяют воздушные системы охлаждения, обеспечивающие принудительную циркуляцию воздуха.

Выбор температуры и относительной влажности воздуха в грузовых охлаждаемых помещениях, а также кратности вентиляции и циркуляции воздуха в них зависит от рода перевозимого груза и сроков его перевозки.

Изготовление искусственного льда. На некоторых пассажир­ских судах устанавливают льдогенераторы для приготовления искусственного льда из пресной воды, который используется для бытовых и медицинских целей. Производительность таких льдогенераторов сравнительно невелика и, как правило, не превышает 200кг в сутки. Некоторые типы промысловых судов снабжают льдогенераторами для изготовления из забортной воды снежного и чешуйчатого льда, предназначенного для интенсивного охлаждения и кратковременного хранения улова ряд судов оборудован весьма мощными льдогенераторными устройствами (на некоторых краболовных судах общая суточ­ная производительность льдогенераторов составляет 25г). Имеются также плавучие льдозаводы производительностью до 100г в сутки, снабжающие в море рыболовецкие суда льдом.

На большинстве рыбопромысловых судов для охлаждения рыбы пользуются дробленым естественным льдом. Однако применение льда, заготовляемого в естественных водоемах, мало приемлемо с санитарной и технологической точек зрения. Такой лед зачастую содержит значительное количество микроорганизмов и других вредных примесей. Пересыпка рыбы дробле­ным льдом, имеющим довольно крупные размеры, не обеспечивает хорошего контакта между льдом и телом рыбы; кроме того, крупные куски льда наносят рыбе механические повреждения. Поэтому наиболее целесообразным и эффективным является охлаждение и хранение рыбы в мелком чешуйчатом или снежном льде, изготовленном на борту судна.

Кондиционирование воздуха осуществляется с целью поддержания в помещениях наиболее благоприятных для человека так называемых комфортных условий. Эти условия в первую очередь определяются температурой и влажностью воздуха в сочетании с его скоростью движения, а также определенным химическим составом воздуха и очисткой его от вредных примесей. Кондиционирование воздуха является развитием техники отопления и вентиляции служебных (машинные отделения, рулевые рубки, камбузы, госпитали и т. д.) и бытовых (каюты, кают-компании, салоны, кинотеатры) помещений. Весьма существен­ное, а иногда и решающее значение имеет кондиционирование воздуха в помещениях, где расположены различные вычислительные приборы, так как точность результатов вычислений во многом зависит от постоянства температуры и влажности воздуха в этих помещениях. В некоторых приборах осуществляется непосредственное охлаждение отдельных деталей.

При кондиционировании воздуха в зимнее время года производятся его подогрев и увлажнение, а в летнее — охлаждение и осушка. Для этого на судах используются холодильные машины, которые в технике кондиционирования воздуха играют большую роль. Производительность холодильных машин, уста­новленных на некоторых судах для кондиционирования воздуха, превышает 1 млн. ккал/час.

Следует сказать, что использование холодильных машин на судах не ограничивается перечисленными областями их применения. В некоторых случаях холодильные машины используются для охлаждения питьевой воды, грузовых танков бензиновозов и спиртовозов, для создания искусственных катков на крупных пассажирских лайнерах и других целей.

Перспективно использование холодильных машин для опреснения забортной воды путем вымораживания из нее кристаллов пресного льда.

Для получения пресной воды, а также отопления помещений весьма эффективно применение на-некоторых судах холодильных машин, работающих по циклу теплового насоса, так как в этом случае количество тепла, выдаваемого машиной, в несколько раз больше теплового эквивалента затрачиваемой электроэнергии.

В последние годы ведутся исследования по использованию холодильных машин в составе судовых энергетических установок для повышения их мощности и экономичности. Здесь намечаются два пути.

Первый путь — использование отбросного тепла для охлаждения трюмов и получения холода для систем кондиционирования воздуха с помощью так называемых теплоиспользующих холодильных машин, а также для получения дополнительной энергии в прямых циклах, где рабочим делом являются холодильные агенты.

Второй путь — охлаждение воздуха, подаваемого для сжигания топлива в двигателях внутреннего сгорания (ДВС) и газотурбинных установках (ГТУ). Так, испытания дизеля Д-50 показали, что при охлаждении наддувочного воздуха, имеющего давление 2 кГ/см2, до 5° С мощность повысилась с 1200 до 1800 э. л. с. Эффективность применения холодильных машин для этих целей значительно возрастает, если холодильные машины работают за счет тепла отработавших газов.

Приведенными примерами не исчерпываются все возможности использования холодильных машин на судах. Развивающаяся газовая промышленность требует перевозки сжиженных газов (пропана, бутана, метана и т. д.), что выгоднее осуществлять без избыточного давления в емкостях, а для этого необходимо охлаждение газа до весьма низких температур, примерно до —160° С. В этом случае используют каскадные холодильные машины, которые, несмотря на значительные габариты и вес, оправдывают себя, так как перевозка газа под высоким давлением требует стальных танков с большой толщиной стенок. Кроме того, благодаря искусственному охлаждению значительно сокращаются потери газа.

Судовые холодильные установки, как и энергетические, в отличие от стационарных имеют ряд особенностей в отношении общего расположения охлаждаемых помещений, размещения оборудования и выбора его типа.

При проектировании и постройке стационарных холодильников желательно придавать им форму куба, чтобы при наибольшей емкости получить минимальную величину внешних ограждающих поверхностей. На судах общее расположение охлаждаемых грузовых помещений, соотношение их размеров и форма зависят от соотношения размеров корпуса судна и его формы, которые определяются мореходными качествами судна, необходимой прочностью корпуса, его живучестью, районом плавания и многими другими факторами. И все же при проектировании грузовых рефрижераторных судов следует по возможности стремиться к наиболее выгодному соотношению между объемом грузовых помещений и размерами ограждающих поверхностей.

На судах, где производят термическую обработку груза, расход холода через внешние ограждения по сравнению с расходом холода на охлаждение и особенно замораживание сравнительно мал, поэтому высказанные выше соображения имеют меньшее значение. В этом случае при выборе общего расположения грузовых охлаждаемых помещений следует считаться с поточностью технологического процесса и грузовых операций, производимых на судне.

Холодопроизводительность установки должна обеспечивать все статьи расхода холода на судах, причем наличие отдельных статей и их удельный вес зависят от назначения и типа судна.

Расход холода через изоляцию слагается из расхода холода через отдельные изолированные ограждения и зависит от их размеров, коэффициентов теплопередачи и разности температур между окружающими данную конструкцию средами. Таким образом, эта статья расхода холода может быть найдена из выражения

Q1 = kFt + kлинPt + qп ккал/час,

 гдеk — коэффициент теплопередачи отдельных изоляционных конструкций, ккал/м2 час град;

F — поверхность конструкций, м2;

kлин — линейный коэффициент теплопередачи на отдельных участках промежуточных палуб или переборок, ккал/м час град;

P — длина отдельных участков, м;

t — соответствующий этим участкам перепад температур,град.;

qп — теплоприток через один пиллерс, ккал/час.

Температура внутри охлаждаемых помещений tT выбирается в зависимости от рода перевозимого груза. Наружная температура ограждающих поверхностей tн выбирается в зависимости от средней температуры окружающей среды в наиболее теплое для данного района плавания время года. Температура настила второго дна и обшивки подводной части бортов принимается равной температуре забортной воды tw, а внешняя температура конструкций, граничащих с внутренними помещениями судна,— температуре этих помещений.

Несколько иначе обстоит дело с выбором температуры внешней поверхности открытой палубы и надводных бортов, подверженных солнечной радиации. Приближенный учет влияния солнечной радиации на температуру палубы и бортов применительно к рефрижераторным судам был произведен С. Д. Левен-соном и В. С. Мартыновским.

Если пренебречь отводом тепла по обшивке бортов в воду, то баланс тепла, отнесенный к 1м2 палубы,

qs = q1+ q2 ккал/м2 час,

где qs — количество излучаемого тепла на 1м2;

q1— тепло, отдаваемое палубой наружному воздуху;

q2— тепло, проходящее внутрь трюма. Величины q1 и q2 находят из выражений

q1 =  (tп — th); q2 = k (tп — tт)

где  — коэффициент теплоотдачи от поверхности палубы к наружному воздуху, ккал/м2 час град;

k — коэффициент теплопередачи изоляции  палубы, ккал/м2час град;

tп , th и tт — соответственно наружная температура палубы, наружного воздуха и трюма, оC.

Опытные данные о влиянии солнечной радиации на тепло-притоки в трюмы рефрижераторных судов практически отсут­ствуют. Предварительные наблюдения, проведенные ЛКИ в ав­густе на среднем рыбопромысловом траулере в южной части Каспийского моря, показали, что температура надводного борта при небольшой его высоте (около 1м) практически была равна температуре забортной воды; среднесуточная температура палубы при ширине ее 8 ж была на 50C выше среднесуточной температуры воздуха.

Расход холода на охлаждение и замораживание груза. При расчете судовых холодильных установок транспортных рефрижераторных судов эту статью расхода холода обычно не учитывают, так как такие суда, как правило, принимают груз, уже охлажденный или замороженный в береговых холодильниках или на специальных судах. Эту статью расхода холода обычно учитывают на судах, где наряду с про­мыслом производится также переработка продуктов промысла (рыбопромысловые траулеры, боты, китобойные базы и др.). При небольшой продолжительности рейса (5—10 суток) обычно ограничиваются охлаждением, а при более длительных рейсах — замораживанием.

Расход холода на охлаждение или замораживание может быть вычислен по формуле

Q2 = G(iнач – ik)/ ккал/час

где G — вес груза, подлежащего охлаждению или замораживанию, кг;

iнач — начальная энтальпия груза, ккал/кг;

ik— конечная энтальпия груза, ккал/кг;

— время охлаждения или замораживания, час.

При охлаждении и замораживании рыбы на судах tнач принимают равной температуре забортной воды, которой она обычно промывается перед термической обработкой.

При определении расхода холода на охлаждение или замораживание груза, поступающего в таре, следует учитывать также расход холода на ее охлаждение.

Наиболее сложно определить время охлаждения или замораживания т, так как эта величина зависит от многих факторов (формы и размеров груза, его физических констант, способа охлаждения или замораживания, температурного режима и т. д.). Пользуясь теорией теплопередачи, можно вычислить величину т, однако точность такого вычисления весьма невелика. В практике обычно приходится пользоваться опытными данными, а при применении теоретических формул вносить поправки, полученные также из опыта.

Охлаждение или замораживание груза обычно производится в специальных аппаратах, которыми снабжены рыбодобывающие суда и плавучие базы. Однако доохлаждение или домораживание груза может осуществляться и в трюмах транспортных судов. Сколько-нибудь точный учет расхода холода на такую доработку груза произвести затруднительно, так как степень доохлаждения или домораживания зависит от случайных факторов.

Расход холода на вентиляцию охлаждаемых помещений зависит от кратности вентиляции, выбираемой в соответствии с родом перевозимого груза, размерами охлаждаемых помещений, а также температурными и влажностными условиями внутри трюмов и снаружи.

Этот расход может быть определен из выражения

Qs = nV/24v (iн – іт) ккал/час,

где V — объем охлаждаемых помещений, м3;

п — кратность вентиляции в сутки;

iн — энтальпия наружного воздуха, ккал/кг;

іт — энтальпия воздуха в охлаждаемом помещении, ккал/кг;

v — удельный объем наружного воздуха при принятых ус­ловиях внутри помещения, м3/кг.

Расход холода на приготовление льда. На рыбопромысловых судах с собственными льдогенераторами эта статья расхода составляет значительную долю от общего расхода холода. Расход холода на приготовление льда

Q4 = Gq ккал/час,

где G — часовая производительность льдогенераторов, кг;

q — расход холода  на приготовление  1  кг льда, ккал/кг;

в зависимости от температуры воды, подлежащей замораживанию, и типа льдогенератора величина q колеблется в пределах 120—160 ккал/кг.

Расход холода, компенсирующий тепловыделения людей и освещения. Обычно в грузовых помещениях транспортных рефрижераторных судов эта статья расхода холода отсутствует, так как во время рейса трюмы закрыты.

При проектировании малых рыбопромысловых судов, в охлаждаемых помещениях которых производится обработка рыбы, а также судов, где совершаются частые погрузки и выгрузки, эту статью расхода холода рекомендуется учитывать. То же самое можно сказать и о провизионных камерах, часто посещаемых людьми. Расход холода определяется из выражения

Q5 = qm + 0,86WCB ккал/час,

где q — тепловыделение одного человека, составляющее в среднем 200 ккал/час;

т — количество работающих людей;

WCB — мощность установленных светильников, вт.

Расход холода, эквивалентный  работе механизмов. Эта статья расхода холода слагается из тепловыделений механизмов, установленных внутри охлаждаемых помещений и непосредственно входящих в состав установки. К последним можно отнести рассольные насосы и мешалки, а также вентиляторы, подающие в трюмы охлажденный воздух. В этом случае часовой расход холода

Q6 = 860 (1 — дв) Nдв ккал/час,

где  дв — к. п. д. двигателя;

Nдв — мощность двигателя, кет;

 — коэффициент одновременности работы оборудования.

При рассольном охлаждении суммарная мощность рассольных насосов невелика, и поэтому величина Q6 составляет 10— 15% от общего расхода холода. При воздушной системе охлаждения благодаря мощным вентиляторам она достигает 25%. Обычно при проектировании крупных рефрижераторных судов определение величины Q6  производится методом последовательных приближений. Приняв вначале величину Q6  приближенно, вычисляют холодопроизводительность установки как сумму всех статей расхода холода, а затем производят уточнение этой ве­личины.

Прочие статьи расхода холода включают различ­ные неучтенные выше потери, к которым в первую очередь следует отнести расход холода через изоляцию испарителей, воздухоохладителей, трубопроводов и воздухопроводов, расположенных вне охлаждаемых помещений. Утечка холода через всевозможные металлические подвески и кронштейны, а также через неплотности в грузовых люках и дверях учитывается при проектировании увеличением расчетной холодопроизводительности на 20—30%.

Расчетная холодопроизводительность. Все статьи расхода холода на охлаждаемые помещения учитывают по этим помещениям отдельно, и их сумма служит для установле­ния теплопередающей поверхности охлаждающих приборов в каждом помещении.

Холодопроизводительность машины (компрессоров) складывается из суммы тепловых нагрузок по всем охлаждаемым помещениям, тепловых нагрузок, связанных с термообработкой груза, изготовлением льда, а также других нагрузок, вызываемых дополнительным расходом холода на потери через изоляцию испарителей, трубопроводов, воздухопроводов и другого оборудования, расположенного вне охлаждаемых помещений. Эти потери составляют 10—30% от суммарного расчетного расхода холода.

В случае, если объекты охлаждения требуют поддержания различных температур, отдельные статьи расхода холода сум­мируют по одинаковым или близким' температурам обычно в пре­делах ±2-:-±3 оС.

Литература


1.                 И.В.Вознизкий «Судовые двигатели внутреннего сгорания», М., Транспорт, 1979, 413 стр.

2.                 В.С.Онасенко «Автоматизация судовых энергетических установок», М., Транспорт, 1981,270 стр.

3.                 А.М.Манькова «Судовые паро-энергетические установки», М., Транспорт, 1989,237 стр.

4.                 А.П.Добровольский «Судовые холодильные машины и установки», Ленинград, Судостроение,1969,252 стр.

5.                 Н.Н. Соловьев «Судовые электро-энергетические системы», М., Транспорт, 1987


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.