Меню
Поиск



рефераты скачать Состав буровой установки

Практикой установлено, что мягкие породы эффективно разрушаются за счет дробяще-скалывающего действия. Этот эффект усиливается вследствие смещения осевых линий шаро­шек от центра вращения долота (рис. 4.7, в). Величина сме­щения   осей   зависит   от   крепости породы. Для мягких пород трехшарошечное долото изготовляют с большим смещением, чтобы шарошки проскальзывали во время качения по забою скважины. Твердые породы характеризуются хрупкостью, вы­сокой прочностью и эффективно разрушаются за счет дробяще-скалывающего действия. Долото испытывает значительную осе­вую нагрузку, чтобы преодолеть прочность породы на сжатие непосредственно под зубцом и разрушить ее. Для твердой по­роды срезывающие усилия не требуются и, следовательно, сме­щение осей отсутствует.

Для пород средней твердости угол смещения осей может со­ставлять 2°.

Зубцы. Длина и геометрия зубцов непосредственно связана с прочностью разрушаемой горной породы, высота ограничи­вается размером шарошки и конструкцией подшипников.

При конструировании учитывают следующие факторы.

1.  Расположение зубцов на шарошке и их взаимное распо­ложение на соседних шарошках, которые определяются проч­ностью зубца, его высотой и значением угла при вершине [3]. Взаимное  расположение  зубца   соседних   шарошек   (рис. 4.8) обеспечивает их зацепление для очистки и, в свою очередь, эф­фективное бурение.

2.  Форму и длину зубцов,  которые определяются характе­ристиками разбуриваемой горной породы. Длинные, острые и расположенные с большим шагом зубцы используют для буре­ния  мягких пластичных пород.  В мягких породах применяют более  длинные  зубцы,   что   позволяет  получить значительный объем породы.  Большое расстояние между зубцами способст­вует легкому удалению обломков породы и самоочищению до­лота. Угол при вершине зубца долота для мягких пород изме­няется от 39 до 42°.

Для твердых пород зубцы изготовляют короче, они имеют меньший угол заострения и расположены более часто, чтобы выдерживать высокие сжимающие нагрузки, необходимые для разрушения. В этом случае зубцы не проникают в породу, а осуществляют ее разрыв за счет приложения высоких сжи­мающихся нагрузок.

Долото для пород средней твердости имеет небольшое число зубцов и средние углы при вершине 43—45° [2]. Угол при вер­шине зубцов долота для твердых пород составляет 45—50°.

3.  Типы зубцов. Зубцы трехшарошечного долота могут быть фрезерованного или вставного типа. Фрезерованные зубцы вы­резаются   из  корпуса   шарошки   (см.  рис.   4.2),   одна  сторона зубца  имеет твердую  поверхность,  покрытую твердосплавным материалом типа  карбида вольфрама, чтобы обеспечить само­затачивающее действие.  Так как неармированная сторона  из­нашивается, то она имеет острую кромку. Значительная долго­вечность   зубца   достигается   путем   покрытия   карбидом вольфрама одной стороны полностью, а противоположной — ча­стично [2]. Такая конструкция уменьшает износ зубца.


 Рис. 4 9. Виды вставок для различных пород:

а — для мягких, б — для мягких и средней твердости, в —для средних и твердых; г — для  твердых





Рис. 4 10   Схема подшипника   типа   ро­лик — шарик — ролик:

1 — наружный   роликовый   подшипник,   2,3 — шариковый   и  роликовый   подшипники.


Долота с фрезерованными зубцами наиболее широко ис­пользуют при бурении очень мягких пород, в которых требу­ются небольшие нагрузки.

Для твердых пород применяют шарошки со вставками шты­ревого типа. Вставки изготовлены из карбида вольфрама и за­прессованы в отверстия, предварительно просверленные в кор­пусе шарошки.

Существуют несколько форм вставных зубцов, каждая из которых предназначена для соответствующей твердости разбу­риваемой  горной  породы   (рис.  4.9).  Остроконечные  вставные

зубцы используют для бурения мягких пород, а круглые и по­лусферические вставки применяют для бурения средних и твер­дых пород. На рис. 4.1 показано долото штыревого типа с остроконечными вставными зубцами.

Подшипники опор долот. Эти элементы долота выполняют следующие функции: 1) воспринимают радиальную нагрузку; 2) воспринимают осевые нагрузки; 3) удерживают шарошки на лапах.

Первая функция осуществляется крайним и ближним к вер­шине цапфы подшипниками, вторая и третья функции — ша­риковыми подшипниками и фрикционными упорными поверх­ностями.

Применяют два различных типа подшипников: качения (ан­тифрикционные) и скольжения  (фрикционные).

Подшипники качения применяют в виде двух схем: ролик — шарик —ролик (РШР) и ролик—шарик—подшипник скольжения (РШС).

Подшипник опоры типа ролик — шарик — ролик (рис. 4.10) включает роликовый подшипник (ближний к вершине цапфы), содержащий ролики (небольшие сплошные цилиндры), проме­жуточный шариковый и наружный роликовый подшипники. Шариковый замковый подшипник служит для закрепления ша­рошки на цапфе Диаметр подшипника определяется углом на­клона цапфы и типоразмером шарошки. Рациональное соотно­шение между диаметрами подшипников, роликов и шариков, толщиной корпуса шарошки определяется прочностью каждой составной части. Недостаток опоры долота со схемой РШР — выкрашивание беговых дорожек на стороне большей нагрузки под действием высоких напряжений. Долговечность долота со схемой РШР меньше по сравнению со схемой, в которой приме­няют подшипники фрикционного типа   (скольжения).

Схема ролик — шарик — ролик обычно используется в доло­тах диаметром более 311 мм в условиях, в которых требуются высокие скорости вращения.

Опора со схемой РШС (см. рис. 4.4) включает подшипник скольжения, установленный ближе к вершине цапфы. Внутрен­ний шариковый и наружный роликовый подшипники такого же типа, что и в схеме РШР. Подшипник скольжения состоит из специальной цементируемой втулки, запрессованной в гнездо передней части цапфы Поверхность цапфы покрыта специаль­ным твердым сплавом (стеллитом) так, что при вращении втулки на цапфе коэффициент трения незначителен, в резуль­тате чего уменьшается износ.

Подшипники скольжения стали применять в бурении, чтобы исключить недостатки опор со схемой РШР — выкрашивание беговых дорожек. Кроме того, замена роликов подшипниками скольжения  позволяет увеличить прочность шарошки вследствие большей толщины корпуса и цапфы за счет ее большего диа­метра.

Опоры по схеме ролик— ша­рик— подшипник скольжения  ис­пользуют в долотах диаметром до 311 мм.


Рис.  4.11. Цапфа  подшипника  скольжения типа СШС [1]:

1 — уравнительные отверстия; 2 — резервуар со смазкой, 3 — отверстие для заполнения смазкой, 4 — канал для смазки, 5 — замковый па­лец, 6 — кольцевой слой смазки, 7 — сальнико­вое уплотнение, 8 — слой твердого сплава на цапфе, 9 — лапа, 10— мембрана для уравнивания давления; 11 — слой специального покрытия для быстрого отвода тепла на внутренней поверхности шарошки, 12 — шарошка, IS — шариковый подшипник, /4 — пята, 15 — стой твердого сплава  на  нагруженной   поверхности  цапфы.


Фрикционные подшип­ники (скольжения). Основное их отличие состоит в том, что ро­лики подшипника, установленного ближе к вершине цапфы, и наруж­ного заменены подшипниками скольжения. Это дает возможность увеличить диаметр опоры, в результате чего получают более прочную опору. Опора по схеме подшипник скольжения — ша­рик— подшипник скольжения (СШС) приведена на рис. 4.11. Существует другой вариант «Хьюз», в котором шариковый подшипник заменен стальным кольцом.

Смазка опор долот. Опоры шарошечных долот бывают не-герметизированные и герметизированные. Негерметизирован-ные опоры смазываются с помощью циркулирующего в сква­жине бурового раствора, поступающего через зазоры между шарошкой и цапфой. Для смазки долот с герметизированной опорой применяют специальную систему, размещенную внутри корпуса лапы. В последнем случае смазка буровым раствором не рекомендуется, так как буровой раствор содержит абразив­ные твердые вещества (песок, барит и т. д.), которые сокра­щают срок эксплуатации долота.

Негерметизированные опоры смазываются буровым раство­ром. Герметизированная опора состоит из подшипников, уплот­нения, резервуара со смазкой и компенсатора давления (см. рис. 411). Уплотнение представляет собой О-образное кольцо, помещенное между шарошкой и самой нижней точкой подшип­ника. Уплотнительное кольцо создает герметизацию, преду­преждающую попадание бурового раствора на опору или вы­ход   смазки.    Резервуар   обеспечивает   подачу   консистентной

смазки в опору через канал. Движение консистентной смазки регулируется системой компенсирования давления.

Компенсатор давления включает гибкую мембрану, которая действует в пределах металлического протектора и удержива­ется стальной крышкой с отверстиями. Компенсатор под­держивает одинаковое давление внутри и снаружи опоры. Механизм компенсирования давления снабжен предохранитель­ным клапаном. Последний защищает уплотнение опоры и ком­пенсатор от повреждения, когда высокая температура способст­вует разложению смазки на газообразные компоненты, в ре­зультате чего увеличивается внутреннее давление.

 

 

КЛАССИФИКАЦИЯ БУРОВЫХ ДОЛОТ

Конструкции долот с фрезерованными зубцами или штыре­вые долота могут быть изготовлены при различных сочетаниях диаметра, форм и типа зубцов, величины смещения, типа под­шипника и механизма смазки. Существует несколько фирм-изготовителей долот, которые выпускают собственные модифи­кации конструкций долот. Таким образом, для одного типа пород имеется несколько конструкций долот различных изгото­вителей.

Международная ассоциация буровых подрядчиков (IADC, или МАБП) в 1972 г. разработала сравнительную классифика­цию для различных типов долот. Основные положения этой классификации приведены в табл. 4.1, в которой каждое до­лото обозначается с помощью трех индексов.

Первый индекс (или цифра) определяет классификацию се­рии, которая относится к вооружению долота. Для долот с фре­зерованными зубцами первый шифр имеет цифры от 1 до 3, который характеризует породу — мягкая, средняя и твердая соответственно.

Мягкие породы (цифра 1) требуют длинных, тонких зубцов с большим шагом между ними для эффективного бурения. Средние породы (цифра 2) требуют коротких зубцов с мень­шим шагом между ними, чтобы выдерживать высокие контакт­ные нагрузки.

Твердые породы (цифра 3) требуют очень коротких зубцов с малым шагом для максимального срока службы долота и эф­фективного бурения.

Для штыревых долот первый индекс — цифры 5—8. Эти цифры соответствуют увеличению твердости породы (см. табл. 4.1).

Второй индекс относится к классу твердости горной породы в пределах каждой группы и имеет номера от 1 до 4. Эти но­мера соответствуют твердости пород от самых мягких до самых твердых в пределах каждой серии.

Третий индекс (от 1 до 9) определяет механические особен­ности [2] долота, например, опоры герметизированные и негерметизированные.

В табл. 4.2 и 4.3 приведены сравнительные характеристики для фрезерованных и штыревых долот четырех фирм-изготови­телей.

В качестве примера использования табл. 4.2 рассмотрим долото с шифром 134. Из табл. 4.2 можно видеть, что шифр до­лота 134 указывает на то, что долото с фрезерованными зуб­цами подходит для мягких пород (класс 3). Этот тип долота характеризуется герметизированной опорой и может быть за­казан у четырех приведенных ниже производителей следующим образом.


Фирма..............                                    «Смит»      «Хьюз»    «Рид»    «Секьюрити»

Марка долота (шифр 134).....      SDG         XIG         S13             S44

Марки штыревых долот с шифром 627 приве­дены ниже.                                 '

Фирма      ...............                             «Хьюз»          «Рид»            «Смит»

Марка долота (шифр 627)      ......           155              FP62               F5

 

 

АЛМАЗНЫЕ ДОЛОТА

Режущие элементы алмазного долота состоят из большого количества небольших алмазов, расположенных на корпусе из карбида вольфрама. В долоте нет движущихся частей, и оно обычно применяется для бурения твердых и абразивных пород, а также когда требуется значительная проходка, чтобы сокра­тить время на спуск и подъем. Это особенно важно для глубо ких скважин (в морском бурении), где стоимость времени ра­боты буровой установки очень велика. Алмазные долота используют при бурении с отбором и без отбора керна. При буре­нии с отбором керна долото применяют в сочетании с грунтоноской, чтобы получить образцы породы.Алмаз — твердый материал и имеет твердость 10 ед. по шкале Мооса. В этой классификации 1 соответствует мягким породам (например, тальк), а 10 — очень твердым минералам (например, алмаз).

Теплопроводность алмаза также самая высокая среди мине­ралов, что позволяет алмазному вооружению быстро охлаж­даться. Это свойство важно для предупреждения разрушения алмазов при быстром нагревании и термическом растрески­вании.

На рис. 4.16 приведены алмазные долота с различными про­филями конусов.

Размер алмазов определяет тип буримой породы. Для буре­ния мягких пород используют крупные алмазы, а для твердых небольшие, так как они не могут вдавливаться глубоко.

Большинство алмазных долот изготовляют для колонкового бурения, так как долота типа PDC менее дороги и имеют вы­сокие производственные показатели. В алмазном колонковом долоте выполнено центральное отверстие, соответствующее диаметру  керна.   При   колонковом   бурении   КНБК.   Включает алмазное  колонковое долото,  грунтоноску,  УБТ  и  бурильную колонну до поверхности..


Рис   4.16   Алмазные до лота с различными про­филями конусов.



 

 

БУРЕНИЕ   ВЕРТИКАЛЬНЫХ   И   НАПРАВЛЕННЫХ СКВАЖИН.


БУРЕНИЕ ВЕРТИКАЛЬНЫХ СКВАЖ.ИН

ПРИЧИНЫ ИСКРИВЛЕНИЯ СТВОЛА СКВАЖИНЫ

В роторном бурении основными элементами бурильной колонны являются долото, стабилизаторы, УБТ и бурильная колонна до устья скважины

Разрушение  породы  осуществляется   под  действием   осевой нагрузки на зубцы долота за счёт веса труб и вращения ротора Действующая нагрузка на долото превышает предел прочности на сжатие и разрушает поверхность породы, а вращение обеспечивает срезающее и разрывающее действие  В результате дей­ствия этих двух факторов образуются частицы породы различных  размеров,  которые вымываются  на  поверхность  потоком бурового раствора или воздуха  После этого зубцы долота внедряются в новую поверхность породы, позволяя таким образом углублять скважину.

Направление оси скважины зависит от состава нижней ча­сти бурильной колонны и характеристики пласта. На рис. 8.1 показано, как под действием приложенных усилий бурильная колонна изгибается и в некоторой точке (точка касания) кон­тактирует со стенками скважины.

Направление скважины обусловлено силами W, F. Силы W и F могут быть количественно определены в любом месте ствола скважины. Сила реакции забоя значительно изменяется в пре­делах одного типа пород, что затрудняет ее количественное оп­ределение и прогнозирование. Сила реакции забоя зависит от типа долота и осевой нагрузки.


Рис 8 1  Схема действия механических факторов на искривление ствола скважины / — ось   скважины    2 — ось   УБТ    La — активная длина УБТ, А — точка касания   / — угол искривления     № — осевая   нагрузка   на   долото    Fотклоняющая (маятниковая) сила.

 

 

ТЕХНОЛОГИЧЕСКИЕ ФАКТОРЫ

Технологические факторы, способствующие отклонению скважины от вертикали, включают осевую нагрузку W и откло­няющую силу F (см. рис. 8.1). Осевая сила представляет общую нагрузку на долото и по характеру является сжимающим уси­лием. Бурильная колонна изгибается под действием нагрузки W и в результате ось УБТ отклоняется от оси скважины.

Силу W, действующую на долото, можно разложить на две составляющие: W\, направленную вдоль оси скважины, и Wi, перпендикулярную к оси скважины. Составляющая W2 обуслов­ливает отклонение скважины от вертикали и ее значение воз­растает с увеличением зазора между УБТ и скважиной и на­грузки на долото. Сила W2 вызывает отклонение скважины влево (см. рис. 8.1).

Маятниковый эффект возникает от действия силы тяжести и наклона ствола скважины; его величина зависит от активной длины УБТ между долотом и первой точкой их касания (см. также раздел «Компоновка низа бурильной колонны»). Усилие F можно разложить на две силы: FcosIвдоль осевой линии скважины; Fsinl — перпендикулярную к оси скважины (более точно эти усилия раскладываются вдоль и перпендикулярно к оси УБТ, однако это допущение дает небольшие погреш­ности). Из рис. 8 1 видно, что под действием силы Fsinl про­исходит отклонение вправо.

Величина и направление результирующего отклонения сква­жины вследствие действия технологических факторов зависит от разницы между W2 и Fsinl.

 

 

ГЕОЛОГИЧЕСКИЕ ФАКТОРЫ

                                   


Рис. 8.2. Влияние твердости пород на искривление скважины

Рис. 8.3. Влияние углов падения пластов на отклонение ствола скважины:

/ — легкоразбуриваемые участки, не имею­щие опоры; 2 — небольшой уступотклонитель, образуемый неразрушенным кли­ном.


Основным фактором, обусловливающим естественное откло­нение скважины от вертикали, является характеристика пласта. Все углеводородные  залежи  (нефтяные и газовые) существуют в пластах, сложенных осадочными породами в виде слоев или пропластков. Осадочные породы могут состоять из чере­дующихся мягких и твердых слоев. Мягкие прослойки легко разбуривают и вымывают промывочными жидкостями, образуя ось скважины с увеличенным диаметром (рис. 8.2). УБТ будут отклонять долото от вертикали в пределах этого интервала, пока при бурении не будет достигнут твердый слой. Непрерыв­ное разбуривание мягких и твердых пластов породы и отклоне­ние долота в пределах размытого диаметра в итоге приведет к отклонению ствола скважины (см. рис. 8.2). Таким образом, происходит нежелательное искривление и резкие изменения на­правления оси ствола скважины.

Слоистость осадочных пород — фактор, способствующий ес­тественному искривлению скважины.

В однородных с горизонтальной слоистостью пластах долото разрушает породу равномерно, и, следовательно, скважина будет вертикальной.

В наклонно залегающих пластах долото разрушает по­роду неравномерно, что приводит к смещению долота в боко­вом направлении и, следовательно, к искривлению скважины. Из практики известно, что направление долота зависит от угла падения пласта. Если угол падения пласта меньше 45°, то скважину, как правило, бурят вверх по восстанию пласта (рис. 8.3). Если угол падения больше 45°, то скважину, обычно бурят вниз по падению пласта. Опыт показывает, что угол отклонения   оси   скважины    меньше   угла    падения    пластов.

Кроме наклона пластов, другими важными геологическими факторами, способствующими искривлению скважин, являются сбросообразование, наличие трещин и разрывов и степень бу-римости.

Эти факторы в совокупности определяют влияние геологи­ческих условий на отклонение скважин от вертикали.

Степени искривления оси скважины подразделяют на незна­чительную, среднюю и высокую. При незначительном искрив­лении происходит небольшое отклонение скважины от верти­кали или наблюдается полное его отсутствие (бурение в твер­дых и изотропных породах). Средняя и высокая степени искрив­ления скважины связаны соответственно с бурением в мягких и средней твердости породах. В таких породах особенно зна­чительно влияние угла падения пластов, образования трещин и изменения прочности пород.

Приведенная классификация пород по степени их влияния на отклонение скважин может быть использована для выбора оптимальной компоновки нижней части бурильной колонны с целью сохранения или изменения отклоненного ствола сква­жины.

 

НАПРАВЛЕННОЕ БУРЕНИЕ

Наклонной можно считать такую скважину, ствол которой намеренно отклоняют от вертикали с целью достижения опре­деленных зоны или интервалов.

ОСНОВАНИЯ   ДЛЯ   ПРОВЕДЕНИЯ   НАПРАВЛЕННОГО   БУРЕНИЯ

Существуют ситуации, в которых бурение скважин, откло­ненных от вертикали, представляет собой практический способ достижения нужной продуктивной зоны. Ниже приводится об­зор этих ситуаций (рис. 8.8).

1.  Разработка   морских   месторождений.   Разработка   всего морского  месторождения  может  быть  осуществлена   бурением требуемого числа скважин с одной платформы (на глубоковод­ном  участке)   или  с  искусственного  острова — на   мелководье (рис. 8.8, а). Эти скважины необходимо отклонять от вертикали под разными углами, чтобы достигнуть границ месторождения.

2.  Бурение   в   плоскости   сброса.   Скважины,   пробуренные в плоскости сброса, являются неустойчивыми вследствие пере­мещения пластов и срезающего действия на обсадную колонну. Скважина, направление которой! пересекает   плоскость   сброса или параллельно ей, не имеет таких осложнений  (рис. 8.8, б).

3.  Бурение в недоступных районах. Когда коллектор нахо­дится под горой или под плотно заселенным районом, наклон­ное бурение — единственный способ при разработке нефтяного месторождения (рис. 8.8, в).

4.  Зарезка нового ствола в скважине. В некоторых случаях часть бурильной колонны остается в скважине, например, при прихвате труб. Если эти   металлические   предметы   нельзя из­влечь, то бурение можно продолжить, изменив направление оси ствола скважины от места над оставшимся металлом. Эта опе­рация называется зарезкой нового ствола и предполагает от­клонение    скважины    от    ее    первоначального    направления (рис. 8.8, г).

5.  Бурение  в  соляные  купола.   Когда   нефтяной   коллектор находится под соляным куполом, то, как показывает практиче­ский    опыт,     необходимо    бурить    направленную    скважину (рис. 8.8, д). Обсадные колонны, спущенные в зону соляных ку­полов,  подвергаются  смятию  в  результате действия  бокового давления, возникающего при оползании солей. Отклонение сква­жины необходимо проектировать так, чтобы избежать соляной купол,  поэтому ствол  отклоняют  непосредственно  над нефте­носной зоной.

6.  Разгрузочные   скважины.    Наклонная   скважина    может быть  пробурена  для  пересечения  и  тушения  фонтанирующей скважины,  чтобы закачать  буровой  раствор  с высокой  плот­ностью.

7.  Бурение разведочных скважин.  Наклонные разведочные скважины проводят на площадях, содержащих перспективные углеводородные структуры. Статистика разведочных работ по­казывает, что одна скважина из девяти — продуктивная. Если скважина,  пробуренная первоначально, оказывается  непродуктивной, то намного дешевле пробурить наклонную скважину из существующей. При этом методе достигается значительная эко­номия первоначальной стоимости бурения, затрат на установку кондуктора и промежуточной колонны. Этот метод аналогичен зарезке нового ствола в скважине.



Рис. 8.8. Варианты бурения направленных скважин.


.

 

ГЕОМЕТРИЯ НАКЛОННОЙ СКВАЖИНЫ

Чтобы достигнуть намеченной глубины, наклонную скважину бурят с поверхности по кратчайшей траектории. Вследствие из­менения литологических свойств траектория скважины редко проходит в одной плоскости: при бурении непрерывно изменя­ются угол наклона и направление ствола. Таким образом, на­клонную скважину необходимо рассматривать в трех измере­ниях и в каждом положении определять угол наклона и направ­ление ствола скважины.

На рис. 8.9, а представлена наклонная скважина в трех из­мерениях и показаны вертикальная и горизонтальная проекции ствола. Наклонная скважина характеризуется следующими па­раметрами (рис. 8.9, б, в).

1.  Угол искривления — это угол между вертикалью и каса­тельной к траектории скважины в любой точке.

2.  Азимут  искривления — это  угол,   измеренный  в  горизон­тальной плоскости между направлением на север и точкой, ле­жащей на траектории скважины. Таким образом, точка с ази­мутом  50° означает,  что  направление  искривления  скважины в этой точке — 50° от севера.

Известно два северных направления: географический север находится на северном полюсе, магнитный север определяет се­верное направление магнитного поля Земли. На практике маг­нитный север находят по магнитному компасу. Два этих север­ных направления земли редко совпадают, поэтому для установ­ления истинного географического севера используют поправку к значению магнитного севера, которая определяется как маг­нитное склонение.

3.   Вертикальная глубина — это истинная глубина скважины по вертикали от поверхности до намеченной зоны.

4.  Горизонтальное смещение — это   расстояние   по горизон­тали до намеченной зоны от контрольной точки подвышечного основания.

Горизонтальное смещение и азимут намеченной зоны в лю­бой точке траектории ствола скважины можно использовать для определения координат смещения на север и восток.

5.  Резкое искривление ствола  скважины  определяется  как изменение угла между двумя точками на траектории скважины и является результатом  изменения  наклона,  направления или того и другого. Резкое искривление ствола скважины на протя­жении какого-то интервала   (например, 30  м)   называется ин­тенсивностью искривления ствола скважины.

6.  Глубина   отклонения — глубина   в   вертикальном   стволе скважины, на которой начинается отклонение от вертикали.

                   



Рис. 8.9. Наклонная скважина:

а — пространственный вид; /, 3 — вертикальная (hв) и горизонтальная (hr ) проекции, 2 — положение устья скважины; б, в — вертикальный и горизонтальный профили; О — точка ствола, с которой отклоняют скважину; К — конечная точка бурения; а — угол наклона  скважины;  А — азимут;   h — фактическая   глубина   скважины



 

ТИПЫ НАПРАВЛЕННЫХ СКВАЖИН

Существуют три типа направленных скважин  (рис. 8.10).

Тип I. Наклонная скважина этого типа отклоняется на ма­лой глубине и угол искривления поддерживается до тех пор, пока не начнется разбуривание намеченной зоны (рис. 8.10, а). Скважины I типа используют для бурения на умеренные глу­бины, для эксплуатации одного продуктивного горизонта, при отсутствии необходимости спуска промежуточной колонны, при бурении на большую глубину, при значительном горизонталь­ном смещении.

Тип II. Так называют скважины S-образной формы (рис. 8.10, б). Скважину отклоняют   на малой   глубине   до тех пор, пока не будет достигнуто максимально необходимое отклоне­ние. Затем направление оси скважины поддерживается постоян­ным, а затем отклонение снижается и скважина приводится к вертикали. Этот тип скважин используют при одновременной совместной эксплуатации нескольких продуктивных горизонтов и бурении разгрузочных скважин. Такие скважины требуют тщательного контроля при бурении.

Тип III. Этот тип подобен типу I за исключением того, что скважину отклоняют на большей глубине, чтобы избежать, на­пример, соляной купол. Скважины такого типа используют при зарезке нового ствола и в разведочном бурении (рис. 8.10, в).


Рис. 8.10. Типы наклонных скважин.



 

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ИСКРИВЛЕНИЯ СКВАЖИНЫ

Вертикальные и наклонные скважины подвергаются глубин­ным измерениям из следующих соображений:

для контроля углубления скважины (фактические данные кривизны скважины используют для графического построения направления скважины и последующего сопоставления с пла­нируемым направлением; отклонение ствола можно скорректи­ровать и привести скважину к нужному направлению);

для предотвращения пересечения данной скважины с сосед­ними, что может произойти при бурении с морского основания;

с целью определения ориентирования, необходимого для раз­мещения отклоняющих инструментов;

для установления точного местоположения забоя по верти­кали, углу искривления, отклонению на север и восток, что может потребоваться в случае открытого фонтанирования, когда необходима разгрузочная скважина для глушения выброса;

для расчета интенсивности искривления ствола сква­жины.

Применяют несколько типов приборов для измерения кри­визны ствола скважины: магнитные приборы одно- и многото­чечного действия и гироскопы. Приборы для измерения кри­визны ствола скважины могут быть сброшены с устья, т. е. бро­сового типа (за исключением гироскопа), или спущены на стальном кабеле для установки в немагнитной УБТ, обычно из сплава К-Монель.



Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.