Меню
Поиск



рефераты скачать Решение транспортных задач

Решение транспортных задач

СОДЕРЖАНИЕ


ВВЕДЕНИЕ                                                                                                      5

1. ОБЩАЯ ЧАСТЬ                                                                                          8

1.1 Математическая постановка задачи                                                          8

1.2 Алгоритм решения задачи                                                                       11

1.3 Блок-схема (алгоритм решения)                                                              25

2.  Формы входной информации                                                                  27

3. Формы выходной информации                                                                 28

4.  Инструкция для пользователя                                                                  29

5.  Инструкция для программиста                                                                30

ЗАКЛЮЧЕНИЕ                                                                                             33

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ                                       34

ПРИЛОЖЕНИЕ А                                                                                          35

ВВЕДЕНИЕ


Математика необходима в повседневной жизни, следовательно определенные математические навыки нужны каждому человеку. Нам приходится в жизни считать(например, деньги), мы постоянно используем(часто не замечая этого) знания о величинах, характеризующих протяженности, площади, объемы, промежутки времени, скорости и многое другое. Все это пришло к нам на уроках арифметики и геометрии и пригодилось для ориентации в окружающем мире.

Математические знания и навыки нужны практически во всех профессиях, прежде всего, конечно, в тех, что связаны с естественными науками, техникой и экономикой. Математика является языком естествознания и техники и потому профессия естествоиспытателя и инженера требует серьезного овладения многими профессиональными сведениями, основанными на математике.

Хорошо сказал об этом Галилей:

«Философия (на нашем языке- физика) написана в величайшей книге, которая постоянно открыта вашему взору, но понять ее может лишь тот, кто сначала научится понимать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики».

Сегодня несомненна необходимость применения математических знаний и математического мышления врачу, лингвисту, историку, и людям других специальностей. Но особенно знание математики необходимы людям точных профессий - финансистам, экономистам.

Профессиональный уровень экономиста во многом зависит от того, освоил ли он современный математический аппарат и умеет ли использовать его при анализе сложных экономических процессов и принятий решений. Поэтому в подготовке экономистов широкого профиля изучения математики занимает значительное место. Математическая подготовка экономиста имеет свои особенности, связанные со спецификой экономических задач, а также с широким разнообразием подходов к их решению.

Задачи практической и теоретической экономики очень разносторонни. К ним относятся, в первую очередь, методы сбора и обработки статической информации, а также оценка состояния и перспективы развития экономических процессов. Применяются различные способы использования полученной информации - от простого логического анализа до составления сложных экономико-математических моделей и разработки математического аппарата их исследования.

Неопределенность экономических процессов, значительный случайный разброс и большой объем получаемой информации обуславливают необходимость привлечения к исследованию экономических задач теории вероятностей и математической статистики.

Наряду с моделированием экономистам необходимо изучать теорию оптимизации, которая представлена математическими методами исследования операций, в том числе линейным программированием.

Отмеченные направления требуют знания основополагающего математического аппарата: основ линейной алгебры и математического анализа, теории вероятностей и математического программирования.

Таким образом, математика и математическое образование нужны для подготовки к будущей профессии.

Один из классов математических моделей- задачи линейного программирования. Одной из задач линейного программирования является транспортная задача- задача составления оптимального плана перевозок, позволяющего минимизировать суммарный километраж. Транспортная задача, как и задача линейного программирования была впервые поставлена советским экономистом А.Н.Толстым в 1930 году. Разработка общих методов решения задачи линейного программирования и их математическое исследование связано с именем советского ученого Л.В.Канторовича. В 1939 году методам решения задачи линейного программирования посвящено также большое число работ зарубежных ученых. Основной метод решения задачи линейного программирования –симплекс метод- был опубликован в 1949 году Дандигом. Симплекс метод дает решение любой задачи линейного программирования, но если переменных очень много, то решение весьма затруднительно и для более сложных задач симплекс метод стали модифицировать.

Транспортная задача делится на два вида: транспортная задача по критерию стоимости- определение плана перевозок, при котором стоимость груза была бы минимальна; транспортная задача по критерию времени- более важным является выигрыш по времени.

Транспортная задача по критерию стоимости является частным случаем задачи линейного программирования и может быть решена симплексным методом. Однако в силу особенностей задачи, она решается намного проще.

1.     ОСНОВНАЯ ЧАСТЬ


1.1          МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ


Транспортная задача-

Однородный груз сосредоточен у т поставщиков в объемах .

Данный груз необходимо доставить п потребителям в объемах .

Известны (i=1,2,…,m; j=1,2,…,n)- стоимости перевозки единицы груза от каждого i-го поставщика каждому j-му потребителю. Требуется составить такой план перевозок, при котором запасы всех поставщиков вывозятся полностью, запросы всех потребителей удовлетворяются полностью и суммарные затраты на перевозку всех грузов минимальны.

Исходные данные транспортной задачи записываются в таблице вида


Таблица 1


 

 

 …

 

 

 

 …

 

 

 

 …

 

 …

 …

 …

 …

 

 

 …

 


Переменными(неизвестными) транспортной задачи являются (i=1,…,m;i=1,2,…,n)- объемы перевозок от каждого i-го поставщика каждому j-му потребителю. Эти переменные могут быть записаны в матрице перевозок

Математическая модель транспортной задачи в общем случае имеет вид

 (1.1)

 i=1,2,…,m, (1.2)

 j=1,2,…,n, (1.3)

 i=1,2,…,m; j=1,2,…,n. (1.4)

Целевая функция задачи (1.1) выражает требования обеспечить минимум суммарных затрат на перевозку всех грузов. Первая группа из т уравнений (1.2) описывает тот факт, что запасы всех т поставщиков вывозятся полностью. Вторая группа из n уравнений (1.3) выражает требования полностью удовлетворить запросы всех n потребителей. Неравенства (1.4) являются условиями неотрицательности всех переменных задачи.

Таким образом, математическая формулировка транспортной задачи состоит в следующем: найти переменные задачи

 i=1,2,…,m; j=1,2,…,n,

удовлетворяющее системе ограничений (1.2), (1.3), условиям неотрицательности (1.4) и обеспечивающее минимум целевой функции (1.1).

В рассмотренной модели транспортной задачи предполагается, что суммарные запасы поставщиков равны суммарным запросам потребителей, т.е.

.

Такая задача называется задачей с правильным балансом, а ее модель- закрытой. Если же это неравенство не выполняется, то задача называется задачей с неправильным балансом, а ее модель- открытой.

Для того чтобы транспортная задача линейного программирования имела решение, необходимо и достаточно, чтобы суммарные запасы поставщиков равнялись суммарным запросам потребителей, т.е. задача должна быть с правильным балансом.

Пример 1:

Составить математическую модель транспортной задачи перевоза груза из двух складов в 3 магазина:


Таблица 2

  

50

70

80

90

9

5

3

110

4

6

8


Решение. Введем переменные задачи(матрицу перевозок)

Запишем матрицу стоимостей

.

Целевая функция задачи равна сумме произведений всех соответствующих элементов матриц С и Х:

Данная функция, определяющая суммарные затраты на все перевозки, должна достигать минимального значения.

Составим систему ограничений задачи. Сумма всех перевозок, стоящих в первой строке матрицы Х, должна равняться запасам первого поставщика, а сумма перевозок во второй строке матрицы Х – запасам второго поставщика:

Это означает, что запасы поставщиков вывозятся полностью.

Суммы перевозок, стоящих в каждом столбце матрицы Ч, должны быть равны запросам соответствующих потребителей:

Это означает, что запросы потребителей удовлетворяются полностью.

Необходимо также учитывать, что перевозки не могут быть отрицательными:

 i=1,2,…,m; j=1,1,…,n.

Ответ: математическая модель задачи формулируется следующим образом: найти переменные задачи, обеспечивающие минимум функции

и удовлетворяющие системе ограничений

и условиям неотрицательности

 i=1,2,…,m j=1,2,…,n.

1.2 АЛГОРИТМ РЕШЕНИЯ ТРАНСПОРТНОЙ ЗАДАЧИ


1.2.1 СБАЛАНСИРОВАННОСТЬ ТРАНСПОРТНОЙ ЗАДАЧИ

Транспортная задача является сбалансированной, если суммарные запасы поставщиков равны суммарным запросам потребителей, т.е.

.

Если транспортная задача не сбалансирована, то возникают особенности в ее решении.

Особенности решения транспортных задач с неправильным балансом:

1.Если суммарные запасы поставщиков превосходят суммарные запросы потребителей, т.е.

то необходимо ввести фиктивного (n+1)-го потребителя с запросами  равными разности суммарных запасов поставщиков и запросов потребителей, и нулевыми стоимостями перевозок единиц груза

2. Если суммарные запросы потребителей превосходят суммарные запасы поставщиков, т.е.

то необходимо ввести фиктивного (m+1)-го поставщика с запасами  равные разности суммарных запросов потребителей и запасов поставщиков, и нулевыми стоимостями перевозок единиц груза

3. При составлении начального опорного решения в последнюю очередь следует распределять запасы фиктивного поставщика и удовлетворять запросы фиктивного потребителя, несмотря на то, что им соответствует наименьшая стоимость перевозок, равная нулю.


1.2.2 ОПОРНОЕ РЕШЕНИЕ ТРАНСПОРТНОЙ ЗАДАЧИ

Опорным решением транспортной задачи называется любое допустимое решение, для которого векторы условий, соответствующие положительным координатам, линейно независимы.

Ввиду того, что ранг системы векторов условий транспортной задачи равен N=m+n-1, опорное решение не может иметь отличных от нуля координат больше, чем N.

Для проверки линейной независимости векторов условий, соответствующих координатам допустимого решения, используют циклы.

Циклом называется такая последовательность клеток таблицы транспортной задачи  в которой две и только соседние клетки расположены в одной строке или столбце, причем первая и последняя также находятся в одной строке или столбце.

Система векторов условий транспортной задачи линейно независима тогда и только тогда, когда из соответствующих им клеток таблицы нельзя образовать ни одного цикла. Следовательно, допустимое решение транспортной задачи , i=1,2,…,m; j=1,2,…,n является опорным только в том случае, когда из занятых им клеток таблицы нельзя образовать ни одного цикла.

Метод вычеркивания. Для проверки возможности образования цикла используется так называемый метод вычеркивания, который состоит в следующем.

Если в строке или столбце таблицы одна занятая клетка, то она не может входить в какой-либо цикл, так как цикл имеет две и только две клетки в каждом столбце. Следовательно, можно вычеркнуть все строки таблицы, содержащие по одной занятой клетке, затем вычеркнуть все столбцы, содержащие по одной занятой клетке, далее вернуться к строкам и продолжить вычеркивание строк и столбцов. Если в результате вычеркивания все строки и столбцы будут вычеркнуты, значит, из занятых клеток таблицы нельзя выделить часть, образующую цикл, и система соответствующих векторов условий является линейно независимой, а решение опорным. Если же после вычеркиваний останется часть клеток, то эти клетки образуют цикл, система соответствующих векторов условий линейно зависима, а решение не является опорным.

Метод минимальной стоимости. Данный метод позволяет построить опорное решение, которое достаточно близко к оптимальному, так как использует матрицу стоимостей транспортной задачи , i=1,2,…,m; j=1,2…,n. Данный метод состоит из ряда однотипных шагов, на каждом из которых заполняется только одна клетка таблицы, соответствующая минимальной стоимости , и исключается из рассмотрения только одна строка(поставщик) или один столбец(потребитель). Очередную клетку, соответствующую , заполняют также. Поставщик исключается из рассмотрения, если его запасы заканчиваются. Потребитель исключается из рассмотрения, если его запросы удовлетворены полностью. На каждом шаге исключается либо один поставщик, либо один потребитель. При этом если поставщик не исключен, но его запасы равны нулю, то на том шаге, когда от него требуется поставить груз, в соответствующую клетку таблицы заносится базисный нуль и лишь затем поставщик исключается из рассмотрения. Аналогично поступают с потребителем.

Пример 2:

Используя метод минимальной стоимости, построить начальное опорное решение транспортной задачи, доставки лекарств из трех складов в четыре аптеки.

Таблица 3

  

 

80

120

160

120

120

1

3

4

2

160

4

5

8

3

200

2

3

6

7


Решение. Запишем отдельно матрицу стоимостей для того, чтобы удобнее было выбирать стоимости, вычеркивать строки и столбцы:

1 4 6 3

среди элементов матрицы стоимостей выбираем наименьшую стоимость . Это стоимость перевозки груза от первого поставщика первому потребителю. В соответствующую клетку (1,1) записываем максимально возможную перевозку  (табл 4). Запасы первого поставщика уменьшаем на 80, . Исключаем из рассмотрения первого потребителя, так как его запросы удовлетворены. В матрице С вычеркиваем первый столбец.

Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.