|
G H I J K L M N O По полученным данным с помощью мастера диаграмм построим график погрешности.
Для определения правильности решения произведем проверку с помощью подбора параметров. Для этого в ячейку А107 введем формулу заданной функции, а в ячейку В107 введем значение Х при котором происходит смена знака. Далее необходимо поставить курсор в ячейку А107 и из меню сервис выбрать подбор параметра. В появившемся окне ввести необходимые данные, нажать кнопку ОК.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
А |
В |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
105 |
Подбор параметров |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106 |
F(X) |
X |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
107 |
0,0000 |
16,950 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
108 |
0,0005 |
28,806 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
109 |
0,0003 |
54,235 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
110 |
0,0000 |
98,448 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
111 |
-0,0002 |
146,365 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
112 |
0,0000 |
158,039 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
113 |
0,0000 |
185,884 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
114 |
0,0001 |
230,163 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
115 |
0,0000 |
318,118 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
116 |
0,0009 |
361,607 |
В появившемся окне Результат подбора параметра нужно нажать
кнопку ОК, после чего в ячейках А107 и В107 появится результат поиска.
7 Понятие оптимизационных задач и
оптимизационных моделей
Экономико-математические задачи, цель которых состоит в нахождении наилучшего, то есть оптимального с точки зрения одного или нескольких критериев варианта использования имеющихся ресурсов, называются оптимизационными.
Оптимизационные задачи решаются с помощью оптимизационных моделей методами математического программирования.
Математическое программирование – это раздел прикладной математики, который изучает задачи оптимизации и методы их решения с ориентацией на современные средства компьютерной техники.
Структура оптимизационной модели включает целевую функцию, области допустимых решений и системы ограничений, определяющих эту область. Целевая функция в самом общем виде также состоит из трех элементов:
· управляемых переменных;
· неуправляемых переменных;
· формы функции (вида зависимости между ними).
Область допустимых решений – это область, в пределах которой осуществляется выбор решений. В экономических задачах она ограничена наличными ресурсами и условиями, которые записываются в виде системы ограничений, состоящей из уравнений и неравенств.
Главная задача математического программирования – это нахождение экстремума функций при выполнении указанных ограничений. Если система ограничений несовместима, то область допустимых решений является пустой.
Сущность задач оптимизации: определить значение переменных х1, х2,..., хn, которые обеспечивают экстремум целевой функции Е, с учетом ограничений, наложенных на аргументы этой функции. При этом сложность решения задач зависит:
· от вида функциональных зависимостей, то есть от связи функции Е с элементами решения;
· от размерности задачи, то есть от количества элементов решения;
· от вида и количества ограничений, накладываемых на элементы решения.
8 РЕШЕНИЕ ЗАДАЧИ
Кондитерская фабрика для производства трех видов карамели А, В и С использует три вида сырья: сахарный песок, патоку и фруктовое пюре. Нормы расхода сырья на производство 1 кг. Карамели заданы в таблице.
Наименование сырья
Нормы расхода (кг./кг.)
A
B
C
Сахарный песок
0,6
0,5
0,6
Патока
0,4
0,4
0,3
Фруктовое пюре
0,1
0,2
0,2
Запасы сырья на складе соответственно равны V1, V2 и V3 кг. Прибыль от реализации 1 кг. Продукции каждого вида определяется значениями РА, РВ и РС. Найти план производства карамели, обеспечивающий максимальную прибыль.
Запасы сырья (кг.)
Прибыль от реализации (руб./кг.)
V1
V2
V3
Pa
Pb
Pc
800
600
120
1,08
1,12
1,28
Подготовим задачу к решению.
Пусть х1 – карамель вида А (кг.)
х2 – карамель вида В (кг.)
х3 – карамель вида С (кг.).
Тогда система ограничений и целевая функция запишутся следующим образом:
Ра*Х1+Рв*Х2+Рс*Х3 =>mах (целевая функция);
х1*0,6+х2*0,5+х3*0,6<=800
х1*0,4+х2*0,4+х3*0,3<=600 ограничения на запасы сырья (сахарный
х1*0.1+х2*0,2+х3*0,2<=120 песок, патока, фруктовое пюре)
х1>=0; x2>=0; x3>=0;
x1, x2, x3- целые числа.
Для решения задачи в Excel запишем ее в виде, представленном на таблице 1.
Таблица 1 – Таблица для решения задачи
Кг.
ограничение
х1
0
800
>=
0
Новости |
Мои настройки |
|
© 2009 Все права защищены.