Меню
Поиск



рефераты скачать Проект ТП 35/10 кВ "Город" ИРЭС ООО "БашРЭС-Стерлитамак" для электроснабжения по...

Экономическая плотность тока для данного случая            jэк=1,2 А/мм2 [6, с.85, таб. 2.26]

Определяем экономически выгодное сечение провода Sэк , мм2, по формуле (2.35)

Из условия S>Sэк выбираем кабель ААБ-10-3х50 [8, с.401, таб.7.10] с допустимым током Iдоп=140А.

Проводим проверку выбранного сечения кабеля по нагреву током нормального режима

допустимая наибольшая температура для данного вида кабеля tдоп=60 оС

,                     (2.48)

где tо - начальная температура прокладки кабеля, ;

     tдоп - допустимая температура нагрева для данного вида

     кабеля, ; в нашем случае tдоп=60 оС;

     Iдоп - допустимый ток для данного вида кабеля, А.

Температура нагрева кабеля токами нормального режима не превышает допустимой.

Проверка кабеля на потерю напряжения (в КЛЭП допускается до 5%) по (2.39). Так как в кабельных линиях активное сопротивление больше реактивного, то последним можно пренебречь.

Сопротивление линии R0=0,62 Ом/км [8, с. 421, таб. 7.28]

Выразим потерю в процентах по (2.40)

,

что допустимо.

Проверка на устойчивость токам КЗ по (2.41)

Коэффициент С для кабелей с алюминиевыми жилами 10кВ С=70 [8, с.18, таб.1.15]

В случае, когда выполняется условие Smin<Sном , кабель устойчив к действию токов КЗ.

В нашем случае 14,9 мм2<50 мм2.Значит, кабель устойчив к действию токов КЗ.

Таким образом, выбираем кабель ААБ-10-3х50

Выбор кабелей для остальных фидеров проводим аналогично и результаты расчетов заносим в таблицу 2.3

Таблица 2.3 - Результаты расчетов и выбора кабелей


Номер фидера

Марка кабеля

Длина кабеля, км

Потеря напряжения, %

Температура нагрева tнагр ,0С

Проверка на устойчивость токам КЗ

1

ААБ-10-3х50

4,2

1,9

19,74

Устойчив

2

ААБ-10-3х50

3,8

1,6

19,09

Устойчив

7

ААБ-10-3х35

1,5

0,89

20,5

Устойчив

10

ААБ-10-3х35

3,2

1,6

19,09

Устойчив

14

ААБ-10-3х35

4,8

3

21,1

Устойчив

15

ААБ-10-3х25

1,3

0,81

20

Устойчив


2.9 Выбор высоковольтного электрооборудования с проверкой на устойчивость к токам короткого замыкания


На стороне 35 кВ трансформаторной подстанции «Бурлы» установлено следующее оборудование: силовой выключатель, трансформаторы тока и напряжения, разъединители.

На стороне 10 кВ подстанции установлены: силовые выключатели, трансформаторы тока и напряжения. Оборудование 10кВ размещено в ячейках КРУН.

Все высоковольтное оборудование выбирается в соответствии с вычислительными максимальными расчетными величинами (токами, напряжениями, мощностями отключения) для нормального режима и режима короткого замыкания.

Выбираем оборудование на 35кВ

Выбираем разъединитель

Таблица 2.4 - Табличные и расчетные данные для выбора разъединителя


РАСЧЕТНЫЕ ДАННЫЕ

ТАБЛИЧНЫЕ ДАННЫЕ

Uном=35кВ

Uном=35кВ

Iном=1000А

=19,43кА

=63кА


Выбираем разъединитель РНДЗ-2-35/1000 [8, с.260, таб.260].

Выбираем выключатель

Таблица 2.5 - Табличные и расчетные данные для выбора выключателя


РАСЧЕТНЫЕ ДАННЫЕ

ТАБЛИЧНЫЕ ДАННЫЕ

Uном=35кВ

Uном=35кВ

Iном=630А

=19,43кА

=35кА

Iк=7,62кА

Iоткл=12,5кА


Выбираем выключатель ВБГЭ-35-12,5/630 [9].

Выбираем трансформатор напряжения

Выясним, какие приборы подключаются на первичное напряжение силового трансформатора 35/10кВ: на первичной стороне подключаются счетчики активной  и реактивной энергии [6, с.321, таб.9.1].

Потребляемая мощность счетчика активной энергии Sпр=8 ВА, реактивной энергии - Sпр=12 ВА.

Так как ко вторичной стороне трансформатора напряжения подключаются счетчики, то выбираем класс точности 0,5.

Выбираем трансформатор напряжения по условию

Выбираем трансформатор напряжения типа НОМ-35-66 [8, с.326, таб.5.13].

Выбираем трансформатор тока

Таблица 2.6 - Табличные и расчетные данные для выбора трансформатора тока


РАСЧЕТНЫЕ ДАННЫЕ

ТАБЛИЧНЫЕ ДАННЫЕ

Uном=35кВ

Uном=35кВ

Iном=100А

=19,43кА

=21кА


Выбираем трансформатор тока типа ТВ-35-100/5 [8, с.310, таб.5.10].

Выбираем оборудование на 10кВ

Выбираем ячейку КРУН

Таблица 2.7 - Табличные и расчетные данные для выбора ячейки КРУН


РАСЧЕТНЫЕ ДАННЫЕ

ТАБЛИЧНЫЕ ДАННЫЕ

Uном=10кВ

Uном=10кВ

Iном=630А

=11,91кА

=20кА

Iк=4,67кА

Iоткл=12,5кА


Выбираем ячейку К59 [9]

Выбираем выключатель

Таблица 2.8 - Табличные и расчетные данные для выбора выключателя


РАСЧЕТНЫЕ ДАННЫЕ

ТАБЛИЧНЫЕ ДАННЫЕ

Uном=10кВ

Uном=10кВ

Iном=800А

=11,91кА

=20кА

Iк=4,67кА

Iоткл=20кА

Выбираем выключатель ВВ/ТЕL-10-20/800 [9].

Достоинством выключателя ВВ/ТЕL является:

- простая конструкция привода и высокая надёжность в работе;

- большой коммутационный и механический ресурсы;

- малые габариты;

- возможность работы в любом пространственном положении;

- удобство установки во все типы КРУ и КСО;

- малое потребление тока при включении и отключении (10 и  1,5 А);

- возможность управления по цепям постоянного и переменного оперативного тока;

- защищенность основных узлов от дуговых и механических воздействий;

- низкая трудоёмкость производства;

- умеренная цена.

Выбираем трансформатор тока

Таблица 2.9 - Табличные и расчетные данные для выбора трансформатора тока


РАСЧЕТНЫЕ ДАННЫЕ

ТАБЛИЧНЫЕ ДАННЫЕ

Uном=10кВ

Uном=10кВ

Iном=300А

=21,6кА

=100кА


Выбираем трансформатор тока типа ТОЛ-10-300/5 [8, с.294, таб.5.9]

Выбираем трансформатор напряжения

Выясним, какие приборы подключаются на вторичное напряжение силового трансформатора 35/10кВ: на вторичной стороне подключаются счетчики активной  и реактивной энергии.  [4, с.321, таб.9.1]

Потребляемая мощность счетчика активной энергии Sпр=8 ВА, реактивной энергии - Sпр=12 ВА.

Так как ко вторичной стороне трансформатора напряжения подключаются счетчики, то выбираем класс точности 0,5.

Выбираем трансформатор напряжения по условию

Выбираем трансформатор напряжения типа НАМИ-10 [8, с.326, таб.5.13].

Выбираем изоляторы

Выбираем изолятор по условию

Выбираем изоляторы типа ОНШ-10-5 [8, с.282, таб.5.7].

Для защиты от перенапряжений применяем ограничители перенапряжений типа ОПН-35 на высокой стороне и ОПН-10 на низкой стороне.


2.10 Релейная защита


В сетях электроснабжения для защиты линий, трансформаторов, двигателей, преобразовательных агрегатов применяют релейную защиту, которая является основным видом электрической автоматики.

Релейной защитой называют специальные защитные устройства, выполняемые при помощи реле и других аппаратов и предназначенные для отключения выключателем в установках напряжением выше 1 кВ или автоматическим выключателем в установках напряжением до 1 кВ повреждённого элемента системы электроснабжения, если данное повреждение представляет собой непосредственную опасность для этой системы, или воздействующие на сигнализацию, если опасность отсутствует.

К релейной защите применяют следующие основные требования:

а) избирательность (селективность) действия, то есть способность релейной защиты отключать только повреждённый участок электрической цепи;

б) быстродействие, то есть способность защиты отключать повреждённый участок электрической цепи за наименьшее возможное время; в случае необходимости ускорения действия защиты допускается её неизбирательная работа с последующим действием АПВ и АВР;

в) надёжность действия, то есть правильная и безотказная работа релейной защиты при всех повреждениях и ненормальных режимах работы элементов, которая обеспечивается применением наименьшего числа устройств с наиболее простыми схемами, наименьшим количеством реле, цепей и контактов;

г) чувствительность, то есть способность защиты отключать участки электрической цепи, которые она защищает, в самом начале их повреждения; в случае необходимости релейная защита должна действовать при повреждениях на смежных участках.

При проектировании релейной защиты учитывают наиболее вероятные повреждения и режимы работы элементов системы электроснабжения.

В данном дипломном проекте рассмотрена релейная защита силового трансформатора. Силовой трансформатор имеет следующие виды защит:

- дифференциальная защита с действием на отключение ввода 35 кВ и ввода 10 кВ;

- двухступенчатая газовая защита трансформатора (I ступень с действием на сигнал; II ступень с действием на отключение трансформатора);

- максимально-токовая защита с действием на отключение ввода 35 кВ;

- максимально-токовая защита с действием на отключение ввода 35 кВ.

Принимаем для защиты трансформатора от токов короткого замыкания МТЗ на стороне низшего и высшего напряжения и газовую защиту от внутренних повреждений. Дополнительной защитой является дифференциальная защита.

Номинальный ток на стороне ВН Iном=66,06А, на стороне НН Iном=231,2А. На стороне ВН установлен трансформатор тока ТВ-35-100/5 , на стороне НН - ТОЛ-10-300/5 . Трансформаторы тока соединены в неполную звезду .

Принимаем для МТЗ реле типа РТ-40/20 и реле времени типа ЭВ-122 с уставками 0,25-3,5 с.

Определяем ток срабатывания МТЗ Iср.защ , А, по формуле

,                       (2.49)

где kнад - коэффициент надёжности; kнад =1,1-1,25;

     kс - коэффициент схемы, определяемый схемой соединения

     трансформаторов тока; kс =1;

     kв - коэффициент возврата; kв =0,8-0,85;

     kт.т - коэффициент трансформации; kт.т =60.

Принимаем для уставки реле РТ-40/20 ток срабатывания 5-10А при последовательном соединении катушек.

Определяем коэффициент чувствительности защиты  при двухфазном КЗ на стороне НН трансформатора

,                            (2.50)

где  - ток короткого замыкания после трансформатора, А;

     - ток срабатывания реле РТ-40/20, А;

, что выше допустимого

Определяем ток срабатывания МТЗ Iср.р , А, устанавливаемой со стороны питания трансформатора, по формуле

                         (2.51)

Определяем коэффициент чувствительности МТЗ при двухфазном КЗ по формуле

,                            (2.52)

где  - ток короткого замыкания до трансформатора, А.

, что выше допустимого

При указанных в расчете токах срабатывания и чувствительности МТЗ при коротких замыканиях будет отключать одновременно трансформатор на сторонах высокого и низкого напряжения.

Для защиты от внутренних повреждений устанавливаем газовое реле типа BF/80Q с действием на отключение при внутренних повреждениях.


2.11 Автоматика электроснабжения


Устройства автоматизации (АПВ, АВР, АЧР и др.) осуществляют автоматическое управление схемой электроснабжения предприятия в нормальном и аварийном режимах. Применение автоматизации позволяет обеспечить длительное нормальное функционирование СЭС, в кратчайший срок ликвидировать аварию, обеспечить высокую надёжность электроснабжения промышленных потребителей и простоту схем, сократить расходы на обслуживание, обнаруживать повреждённые участки с наименьшими затратами труда, повысить качество электроэнергии и экономичность работы электроустановок.

Благодаря устройствам автоматизации стало возможным применение подстанций с упрощёнными схемами коммутации.

На подстанциях нашли наибольшее распространение следующие устройства автоматизации: АВР - автоматическое включение резерва, АПВ - автоматическое повторное включение, АЧР - автоматическая частотная разгрузка, АРТ - автоматическая разгрузка по току.

Подстанции работают, как правило, по схеме с односторонним электроснабжением потребителей. Такой режим позволяет снизить токи короткого замыкания сети, применять более дешёвую коммутационную аппаратуру, сократить или полностью исключить обслуживающий персонал подстанций. Однако раздельная работа по сравнению с их параллельной работой обеспечивает меньшую надёжность электроснабжения, что и вызывает необходимость установки устройств автоматики (АУ).

Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.