Меню
Поиск



рефераты скачать Проектирование выходного каскада связного передатчика с частотной модуляцией

 (3.2.7)

8.                 Максимальная рассеиваемая на коллекторе мощность на коллекторе транзистора приближённо рассчитывается так:

 (3.2.8)

где . – коэффициент рассогласования входного сопротивления нагрузки, который в оконечном каскаде не должен быть ниже 0,5.

9.                 Номинальное сопротивление коллекторной нагрузки определяется выражением:

 (3.2.9)

Подставляя численные значения в (3.2.9), получаем:

Нагрузкой нашего связного передатчика является фидер с входным сопротивлением 75 Ом, поэтому после трансформации сопротивления с коэффициентом ¼, т.е. из большего в меньшее (см. раздел 4 РАСЧЁТ ЦЕПИ СОГЛАСОВАНИЯ) получаем, что Rкэ = 75/4 = 18,75 Ом. Поскольку полученное значение этого сопротивления очень близко к рассчитанному значению этого же сопротивления по формуле (3.2.9), то нет смысла проводить коррекцию проведённых ранее расчётов коллекторной цепи.


3.3.         РАСЧЕТ БАЗОВОЙ ЦЕПИ


Для транзисторов УВЧ и СВЧ  существенную роль играют LC – элементы, образующиеся между кристаллом и корпусом транзистора. При расчёте входной цепи транзистора с ОЭ предполагается, что между базовым и имиттерным выводами транзистора по радиочастоте включен резистор Rдоп и Rбк (см. рис. 3.3.1), сопротивление которого составляет:

 (3.3.1)


(3.3.2)

Рис 3.3.1

Подставляя численные значения в (3.3.1) и (3.3.2) получаем:

Далее расчёт будем вести в соответствии с методикой [5] стр. 112 – 114.

1.      Амплитуда тока базы определяется соотношением:

                            (3.3.3)

где коэффициент c равен:

                                  (3.3.4)

Подставляя численные значения в (3.3.3) и (3.3.4) получаем:

2.                 Напряжение смещения на эмиттерном переходе при q = 90° находится как:

 (3.3.5)

Где Еотс = 0,7 В (для кремниевого транзистора).

Подставляя численные значения в (3.3.5) получаем:

3.                 Значение максимального обратного напряжения на эмиттерном переходе определяется формулой:

                          (3.3.6)

Подставляя численные значения в (1.12) получаем:

По результатам видно. что полученное значение не превышает допустимое значение (Uбэ доп = 4 В).

4.                 Рассчитаем параметры эквивалентной схемы входного сопротивления транзистора при включении с общим эмиттером:

                                                 (3.3.7)

При расчёте входной индуктивности необходимо добавить к Lэ ещё 3 нГн с учётом погонной индуктивности соединительного проводника с кристаллом, тогда получим:

 (3.3.8)

При расчёте rвх оэ необходимо учесть, что Ска = Ск/2, а к Lэ также добавляется погонная индуктивность 3 нГн, после подставления в (3.3.8) необходимых значений имеем:

       (3.3.9.)

после подстановки значений в (3.3.9),  имеем:

                                           (3.3.10)

Подставляя в (3.3.10) численные значения величин, получаем:

5.                 Активная и реактивная составляющие комплексного выходного сопротивления транзистора вычисляются по формулам:

                                    (3.3.11)

                          (3.3.12)

Подставляя в (3.3.11), (3.3.12) численные значения величин, получаем значение входного сопротивления транзистора на частоте 80 МГц:

ZВХ = 2,535 + j 3,249 (Ом).                                         (3.3.13)

6.                 Расчёт входной мощности транзистора:

                                             (3.3.14)

После подстановки получаем:

Вт

7.                 Расчёт коэффициента усиления по мощности транзистора

(3.3.15)

После подстановки имеем:

8.      Определение постоянных составляющих базового и эмиттерного токов:

                                (3.3.16)

Подставляя численные значения величин в (3.3.16), получаем:

После выполнения расчёта входной (базовой) и коллекторной цепи транзистора (при наихудших условиях) видно, что в выбранном режиме транзистор может обеспечить требуемую мощность 6 Вт на выходе передатчика с Kp =5,119, имеет при этом достаточно высокий КПД » 66,4%.

Теперь определим мощность рассеиваемую в транзисторе, значение которой является исходным параметром для расчёта температуры в структуре транзистора и системы его охлаждения.(в данной работе расчёт этих температур не проводится).

Ррас » Рк max +Рвх = 4,572 + 1,465 = 6,037 Вт.

В это соотношение подставлены величины рассчитанные по (3.2.8) и (3.3.14). На этом расчёт базовой цепи заканчивается.

3.4.         Расчёт цепи питания


Выходная цепь активного элемента (АЭ) содержит цепь согласования (ЦС) с нагрузкой и источник питания, Эти элементы можно включить последовательно или параллельно. Поэтому, в зависимости от способа включения этих элементов в цепях питания выходных цепей ГВВ цепи питания делят на последовательные и параллельные соответственно.

К схемам питания выходных цепей ГВВ предъявляются следующие требования:

Ø                      Вся первая гармоника выходного тока должна проходить через нагрузку;

Ø                      Количество «побочных» цепей должно быть минимальным, т.к. большое их количество ведёт к уменьшению выходной мощности, а для каскада прямой задачей которого как раз и является усиление по мощности такое свойство не к чему.

И последовательная и параллельная схемы питания выходных цепей ГВВ удовлетворяют перечисленным требованиям. Но хотя схемы последовательного питания близки к идеальным при рациональным выборе блокировочных элементов, применять их можно лишь с такими цепями согласования, в которых имеется путь для постоянной составляющей выходного тока АЭ. При схемах ЦС, в которых элементом связи с АЭ является ёмкость необходимо использовать схемы параллельного питания (см. рис 3.4.1). Поэтому для нашего оконечного каскада в связи с тем, что цепью согласования является трансформатор сопротивления на длинных линиях (см. раздел 4 РАСЧЁТ ЦЕПИ СОГЛАСОВАНИЯ) воспользуемся именно такой (рис. 3.4.1) схемой питания выходной цепи ГВВ.

Cбл1 в параллельной схеме питания выходной цепи ГВВ необходима для того, чтобы постоянная составляющая коллекторного тока не попадала в нагрузку, т.е. был обрыв для Iк0. Lбл защищает источник питания от высокочастотной составляющей коллекторного тока, а Сбл2 уводит высокочастотные помехи из цепи питания на землю, чтобы они не попадали в коллекторную цепь.


Рис. 3.4.1 Цепь питания выходной цепи ГВВ

(параллельная схема)


Для того чтобы блокировочные элементы выполняли свою функцию необходимо правильно выбрать их номиналы. Для этого воспользуемся методикой предложенной в [6] на стр. 90 – 93 в соответствии с которой выражения для определения ноиналов блокировочных элементов следующие:

                                  (3.4.1)

По другому (3.4.1) можно записать как:

 (3.4.2)

Подставив численные значения в (3.4.2) получаем ориентировочное величинуСбл1:

 (3.4.3)

 (3.4.4)

Подставив численные значения в (3.4.4) получаем ориентировочное величину Lбл:

 (3.4.5)

 (3.4.6)

На этом расчёт цепи питания внешней цепи нашего оконечного мощного каскада заканчивается.


3.5.         РАСЧЕТ ЦЕПИ СМЕЩЕНИЯ


В мощных выходных каскадах, где транзисторы обычно работают с отсечкой тока (в нашем случае q =90°), для получения линейной модуляционной характеристики надо обеспечить постоянство угла отсечки на всём интервале изменения входного тока или напряжения. Это достигается подбором определённого напряжения смещения на базе.

При включении транзистора по схеме с ОЭ величина напряжения смещения Еб в функции от амплитуды Iб и угла отсечки q  определяется согласно соотношению:

 (3.5.1)


Рис. 3.5.1 Электрическая схема для подачи смещения на базу


Для достижения q = const при изменении тока базы Iб = var смещение должно быть комбинированным – внешнее от источника Епит и автосмещение от постоянной составляющей тока базы Iб0 на сопротивлении Rавт в цепи базы транзистора:

Еб=ЕпитIб0 × Rавт (3.5.2)

Из (3.5.1) и (3.5.2) с учётом (3.3.3), (3.3.16) и соотношения Iк1 / Iк0 = g1(q) / g0(q) следует, что для сохранения постоянного угла отсечки q и, следовательно, коэффициентов g0(q), g0(p-q) при изменениях амплитуды Iб или постоянной составляющей Iб0 необходимо внешним смещением скомпенсировать напряжение отсечки транзистора

Епит = Еотс (3.5.3)

и поставить в схему сопротивление:

 (3.5.4)

Для подачи смещения на базу воспользуемся схемой (см. рис. 3.5.1) в которой при R1  >> R2 Þ Rавт > Rдоп, а именно Rавт = Rдоп + R2 и на основании (3.5.4) следуют расчётные соотношения для R2 и R1:

 (3.5.5)

 (3.5.6)

Подставив в (3.5.5) и (3.5.6) необходимые величины (см. таблицу 3.1 и разделы 3.2 и 3.3) получаем:

Rдоп = 9,478Ом

Через R1 и R2 протекает ток делителя равный Iдел = Епит / (R1 + R2), который может быть соизмерим и даже больше тока базы Iб0. В нашем случае ток делителя равен:

Iдел = 19,5 / (61,17+2,34) = 0,307 А > Iб0 = 0,0376 А, т.е. Iдел на порядок больше Iб0.

Заметим, что если автосмещение должно быть безынерционным, чтобы успевать следить за изменением огибающей ЧМ (или АМ) сигнала, то внешнее смещение – наоборот, инерционным. Это накладывает ограничения на величины блокировочных конденсаторов в цепи питания:

 (3.5.7)

Подставляя в это соотношение значения, рассчитанные по (3.5.5) и (3.5.6) получаем соотношение для выбора блокировочной ёмкости:

 (3.5.8)

На этом, расчёт цепи смещения на базу транзистора заканчивается.


4.                расчёт цепи согласования


4.1.         Электрический расчёт


К выходным, межкаскадным и выходным цепям согласования ЦС , установленным в ГВВ, предъявляется ряд требований:

1.)                   Трансформация нагрузочных сопротивлений на основной частоте;

2.)                   Обеспечение для входных цепей определённого входного сопротивления Zвх(nw), а для входных цепей – определённого выходного сопротивления Zвых(nw) на частотах высших гармоник;

3.)                   Обеспечение заданных амплитудно- и фазочастотных характеристик;

4.)                   Возможность перестройки в рабочей полосе частот и при изменениях нагрузки.

Для работы активного элемента (АЭ) оптимальном (граничном) режиме в выходную цепь необходимо включить сопротивление нагрузки Rгр (в нашем случае, рассчитанное по (3.2.9) Rэк ном = 19,34 Ом). Но сопротивление нагрузки реального потребителя энергии высокочастотных колебаний в общем случае отличается от выходного сопротивления транзистора в граничном режиме (в нашем случае по техническому заданию потребитель ВЧ энергии – фидер с входным активным сопротивлением Rвх фид = 75 Ом). Поэтому первой задачей ЦС (в нашем случае) является преобразование входного сопротивления фидера к выходному сопротивлению оконечного усилительного каскада. Другими словами необходимо трансформировать 75 Ом в » 19,34 Ом, т.е. необходимо ЦС обеспечить коэффициент трансформации ¼ если смотреть от потребителя.

По предложенной структурной схеме связного передатчика с ЧМ (см. раздел 2) ЦС нет необходимости фильтровать высшие гармоники, т.к. эта задача лежит на «плечах » выходного фильтра. А также для обеспечения важного 4.) ‑ го требования к ЦС целесообразно использовать в качестве ЦС трансформатор на феррите (см. [5] стр. 216) при использовании которого отпадёт необходимость в перестройке ЦС в рабочей полосе частот.

Такие широкодиапазонные трансформаторы с коэффициентом перекрытия по частоте 10…103 и выше выполняют обычно с магнитопроводом и разделяют их на два класса:

Ø                с доминирующеймагнитной связью между обмотками, те обычные трансформаторы;

Ø                с электромагнитной связью между обмотками, образованными отрезками длинных линий, так называемые трансформаторы на длинных линиях (ТДЛ).

Для современных мощных генераторных транзисторов характерны низкие входные и нагрузочные сопротивления, составляющие единицы и даже доли ома. При столь низких нагрузочных сопротивлениях частотные ограничения «сверху» определяются индуктивностями рассеяния, которые не должны превышать единиц и даже долей наногенри, что в обычных трансформаторах обеспечить затруднительно. Поэтому для трансформации столь низких сопротивлений в диапазоне частот 0,1…1000 МГц и выше используют ТДЛ, помещаемых на магнитопроводе из феррита (верхняя граничная частота полосы пропускания такого трансформатора ограничена потерями в линиях, а также индуктивностями выводов соединительных проводов (монтажа) и паразитными межвитковыми ёмкостями, а нижняя частота индуктивностями намагничивания обмоток).

В нашем случае мы в качестве ЦС будем использовать ТДЛ, который изображён на рис. 4.1.1 с коэффициентом трансформации ¼ (см. выше). При построении трансформатора с коэффициентом трансформации отличным от 1:1, используют N линий (в нашем случае число линий N = 2), включаемых параллельно и последовательно по входу и выходу в различных комбинациях. В нашем случае, соответственно, для обеспечения коэффициента трансформации сопротивления ¼ достаточно включить две линии с одинаковыми волновыми сопротивлениями rл, параллельно с одной стороны и последовательно с другой (см. рис. 4.1.1).


Рис. 4.1.1 ТДЛ с коэффициентом трансформации ¼

Предполагается, что линии достаточно разнесены в пространстве и между их проводниками не образуется дополнительных магнитных и электрических связей. В этом случае, чтобы каждая линия была нагружена на согласованное сопротивление. Необходимо выполнить условие:

Rн = N × rл (4.1.1)

Откуда:

 (4.1.2)

В нашем случае N = 2, Rн = 75 Ом (входное сопротивление фидера), Uг=Uк max=Uк1 гр  =17,032 В (см раздел 3.2).

Подставляя в и (4.1.2) входящие величины имеем:

По техническому заданию мощность на выходе передатчика (на нагрузке) должна быть 6 Вт (с запасом 7,5 Вт) то амплитудные значения напряжения и токав нагрузке можно определить по формулам:

       (4.1.3)

После подстановки численных значений в (4.1.3) имеем:

Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.