Меню
Поиск



рефераты скачать Проектирование электропривода тепловизионной системы сопровождения

Проектирование электропривода тепловизионной системы сопровождения

Министерство науки и образования Российской Федерации

Тульский государственный университет

Кафедра «Проектирование автоматизированных комплексов»

 

 

 

 

 

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по направлению 550200 «Автоматизация и управление»

на тему: «Проектирование электропривода тепловизионной системы сопровождения».

 

 

 

студента группы. 120901

 

 

Семёнова Сергея Анатольевича




Руководитель ВКР от университета: доц., к.т.н. __________________Никитин В.А.

 






Тула 2004

Реферат

 

Пояснительная записка к ВКР:            с,         рисунков,         источников.

Ключевые слова: тепловизионная система, автосопровождение, электропривод, горизонтальное наведение, кинематические параметры, исполнительный двигатель, математическая модель, синтез, трехпозиционное управление, автоколебания, моделирование, частотные характеристики, переходный процесс, исполнительный механизм.

В данной выпускной квалификационной работе спроектирован замкнутый по скорости исполнительный привод горизонтального наведения тепловизионной системы автоматического сопровождения целей типа вертолёт и танк, размещенный на неподвижном основании. Проведены расчёты кинематических и энергетических характеристик исполнительного механизма, выбран исполнительный двигатель постоянного тока ДП 90-60, рассчитано передаточное число редуктора, параметры математической модели. Проведён синтез трехпозиционный автоколебательной системы управления привода и определены основные динамические характеристики методом математического моделирования. Разработана кинематическая схема исполнительного механизма и рассчитаны её основные конструктивные параметры.


Содержание.

Введение. 4

1. Проектирование электропривода тепловизионной системы сопровождения. 9

1.1. Расчет кинематических характеристик. 9

Выбор режимов работы привода. 9

1.2 Расчет энергетических характеристик исполнительного механизма. 13

1.3 Выбор передаточного числа редуктора. Определение располагаемых. 16

кинематических характеристик. 16

1.4 Расчет зон сопровождения цели. 18

1.5 Расчет параметров матмодели исполнительного двигателя и статических характеристик. 20

1.6 Синтез замкнутого по скорости привода и определение его характеристик. 24

1.6.1 Выбор закона управления. 24

1.6.2 Результаты математического моделирования. 28

2. Разработка кинематической схемы редуктора. 32

Заключение. 39

Список литературы.. 41

Приложение………………………………………………………………………...42

Введение.

 

Назначение и задачи, решаемые ПТРК. Выбор типа системы автосопровождения цели.

 

Важная роль в условиях современного боя отводится танкам. Танк по праву считается ударной силой наземных войск. Учитывая решающую роль танков и других объектов бронетанковой техники в обеспечении успеха наземного боя, в армиях всех стран уделяют большое внимание разработке и совершенствованию различного рода противотанковых средств, которыми в настоящее время вооружаются многие рода войск: бронетанковые, ракетные, авиационные, пехотные, десантные и др.

При всём многообразии противотанковых средств в качестве основного оружия используются противотанковые ракетные (ПТРК) и ракетно-артиллерийские комплексы, основными преимуществами которых являются большая дальность стрельбы (4-6 км), высокая бронепробиваемость, гибкость основных средств, небольшие габаритные размеры, несложность ракет и пусковых установок.

Постоянная модернизация бронетанковой техники, направленная на повышение её защиты (увеличение толщины брони, оснащение динамической защитой, средствами постановок пассивных и активных оптических и радиолокационных помех, ночными прицелами), увеличение дальности прицельной стрельбы танковых пушек поставили перед разработчиками ПТРК задачи сокращения времени обнаружения цели, момента открытия огня, увеличения дальности стрельбы, помехозащищенности, обеспечения всесуточности  и всепогодности применения.

Выполнение указанных требований в одном образце невозможно технически и нецелесообразно с экономической точки зрения. Поэтому для противотанковых комплексов III поколения рекомендуется использовать вместо дорогостоящего в реализации принципа “выстрелил-забыл”, который ранее считался основным признаком систем III поколения, принцип “вижу-стреляю” при наблюдении за целями в оптический или тепловизионный прицел, позволяющий обеспечить независимость характеристик обнаружения различных целей от их сигнатур* в оптическом и ИК диапазонах электромагнитных волн.

Использование лазерно-лучевой системы управления с большим энергетическим потенциалом и тепловизионного прицела обеспечивает практически полную защищенность от активных и пассивных (боевые дымы) оптических помех.

Пассивный характер работы оптико-механических и оптико-электронных (тепловизионных) систем обнаружения и сопровождения цепей повышает скрытность, помехозащищенность и, как следствие, выживаемость комплексов на поле боя.

Тепловизионная система автосопровождения: цели, назначение, состав, режим работы.


Для комплекса, работающего на неподвижном основании, тепловизионная система автосопровождения цели может быть построена в соответствии с функциональной схемой (рис. 1).


ТПВ  - тепловизор

ВКУ  - видеоконтрольное устройство

ЭИУ  - электронное исполнительное устройство

КФАС - корректирующий фильтр контура автосопровождения

ГДУ  - гироскопический датчик угла

КС     - компенсирующая связь

Дв     - исполнительный электродвигатель

ТГ     - тахогенератор

Р        - редуктор

Рис. 1. Функциональная схема тепловизионной схемы автосопровождения цели ПТРК.


Чувствительным элементом, выделяющим координаты, является тепловизионный автомат. С помощью ИК объектива тепловизор принимает тепловое излучение от целей и местных предметов, преобразуемое охлаждаемым матричным фотоприемником с зарядовой связью (ПЗС - матрицей) в электрический сигнал, который формирует видимое изображение тепловой картины в телевизионном стандарте. Развертка изображения (по элементная передача изображения) осуществляется по всей рабочей поверхности светочувствительного слоя. В системах электронного слежения со следящим стробом на это изображение накладывается подсвечивающий прямоугольник (окно слежения - строб), определяющий пространственную область чувствительности визира и соответствующий положению начала следящей системы координат. В режиме слежения строб вручную совмещается с выбранным объектом слежения по экрану вспомогательного видеоконтрольного устройства, после чего система переходит в режим автосопровождения. При смещении проекции объекта по поверхности фотокатода относительно следящего строба на выходе решающего устройства образуется напряжение рассогласования, которое поступает на электронное исполнительное устройство (интегратор). Выходной сигнал интегратора по цепи обратной связи воздействует на задающее устройство так, что формируемые им сигналы изменяются, и положение строба совмещается с проекцией объекта.

Задающее устройство хранит в памяти изображения типовых целей. В решающем устройстве необходимый информационный параметр видеосигнала сравнивается с поступающим из задающего устройства, на основе чего и формируется сигнал рассогласования .

Этот сигнал отрабатывается контуром автосопровождения, исполнительным элементом которого является замкнутый по скорости электропривод постоянного тока, и используется как управляющий сигнал для поворота тепловизора в направлении совмещения его оси с целью.

Таким образом, система сопровождения является 2х - контурной, грубый канал которой обеспечивает перемещение тепловизора, а точный осуществляет движение следящего строба обрамляющего цель, с помощью электронного исполнительного устройства.

Корректирующий фильтр КФАС обеспечивает точность и устойчивость контура автосопровождения. Гироскопический датчик угла ГДУ стабилизирует изображение при работе двигательной установки КУВ.

Для увеличения точности слежения может использоваться компенсирующая связь КС, представляющая собой сумму производных сигнала рассогласования и скорости исполнительного механизма и характеризующая скорость цели:

                                                                                                       (1)

Несмотря на то, что исполнительный привод является силовым элементом контура автосопровождения, он должен обеспечивать малую инерционность, широкую полосу пропускания, т.е. оказывать минимальное влияние на динамику системы слежения.

Целью настоящей работы является проектирование исполнительного привода тепловизионной системы автосопровождения по следующим исходным данным:


Параметры движения

Вертолёт

Танк

Параметры нагрузки

1. Проектирование электропривода тепловизионной системы сопровождения

 

1.1. Расчет кинематических характеристик Выбор режимов работы привода



Исполнительным элементом тепловизионной системы сопровождения цели, работающей на неподвижном основании, является замкнутый по скорости привод.

Исполнительный механизм привода должен преодолевать имеющуюся на выходном валу нагрузку и развивать скорости и ускорения, обеспечивающих слежение за входным управляющим воздействием.

Анализ кинематических характеристик является важным этапом процесса проектирования, который нужно проводить непосредственно после выявления технических требований к приводу. Значения скоростей и ускорений, которые может развивать реальный привод, ограничены по величине.

Если требуемые скорость и ускорение выше тех значений, которые способен обеспечить привод, то попытки получить удовлетворительное функционирование привода введением каких - либо корректирующих устройств будут бесполезны, никакая система управления исполнительным двигателем не может обеспечить требуемые моменты и скорости, если они не заложены в самой конструкции исполнительного механизма.

Расчет позволяет определить угловые скорость и ускорение привода, а также моменты времени, когда они достигают экстремальных значений. Исходными данными для расчета являются закон движения цели и его параметры. В практике следящих систем часто реализуется закон равномерного прямолинейного движения, характеризующийся постоянным значением линейной скорости цели.

 

 

 - расстояние от начала координат до объекта слежения.

 - проекция  на горизонтальную плоскость.

 - проекция  на ось X.

Нумерацию формул

                                                                               (2)

                                                                                        (3)

                                                                                                     (4)

 - скорость цели;

 - начало слежения;

 - текущее время слежения;

 - параметр (расстояние между двумя параллельными курсами);

 - высота цели;

Определим кинематические характеристики горизонтального канала:



                                                                  (5)

                                                                                                       (6)

 ,                                                                                          (7)

                                                                                                            (8)

                                                                       (9)

                                                                             (10)

                                                                                         (11)

                                                                                                   (12)

Угловые скорости и ускорения определены для скоростей цели V=100м/с (вертолёт) и V=20м/с (танк) для диапазонов изменения параметров p=0,1-2 км, H=5-50 м, Dн=0-8 км, Dг=0-6 км. Потребные значения скоростей и ускорений определялись до курсовой дальности 500 м.

Все расчеты выполнены с помощью Microsoft Excel и приведены в приложении.

При сопровождении цели до курсовой дальности 500м максимальные значения кинематических параметров на различных траекториях наблюдаются для вертолёта, движущегося со скоростью 100 м/с, и составляют (таблица 1):


Таблица 1


P=0,1 км

P=0,2 км

P=0,3 км

P=0,5 км

P=1 км

P=2 км

0,0385

0,069

0,0882

0,1

0,08

0,0471

0,0148

0,0238

0,026

0,02

0,0064

0,0011


Рис. 2. - Значения скорости и ускорения вертолёта.

Максимальные значения кинематических параметров наблюдаются в двух режимах:

-         при  p = 0,5 км ,;

-         при  р = 0,3 км , .

1.2 Расчет энергетических характеристик исполнительного механизма

Проанализируем потребную мощность привода в режимах максимальной скорости и максимального ускорения

                                                                                   (13)

На курсовой дальности Dк=500 м максимум мощности наблюдается при р=0,5 км (рис. 3) и составляет 7,6 Вт

 

Рис. 3. - График потребной мощности горизонтального канала на  для всех параметров .

Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.