Меню
Поиск



рефераты скачать Подходы к оценке рисковых инвестиций

$1,224

$1,439


Наибольший интерес обычно представляют пессимистичные сценарии. Сделаем предположение о том, цена продаж по первой и второй трубам уменьшилась на 5%. Проведя все расчеты эффективности, получим значение внутренней нормы доходности на уровне 12.94%.

Может быть также интересен сценарий, когда на 5% уменьшается объем реализации первой и второй труб. В этом случае IRR = 22.20%. Более комплексный сценарий может быть представлен, например, в виде одновременного увеличения цены готовой продукции и стоимости сырья на единицу продукции на 5 процентов. Данный сценарий может быть квалифицирован, как оптимистичный. В самом деле, расчет внутренней нормы доходности приводит к значению 38.45%.

4. Имитационное моделирование Монте-Карло


Метод имитационного моделирования Монте-Карло создает дополнительную возможность при оценке риска за счет того, что делает возможным создание случайных сценариев. Применение анализа риска использует богатство информации, будь она в форме объективных данных или оценок экспертов, для количественного описания неопределенности, существующей в отношении основных переменных проекта и для обоснованных расчетов возможного воздействия неопределенности на эффективность инвестиционного проекта. Результат анализа риска выражается не каким-либо единственным значением NPV, а в виде вероятностного распределения всех возможных значений этого показателя. Следовательно, потенциальный инвестор, с помощью метода Монте-Карло будет обеспечен полным набором данных, характеризующих риск проекта. На этой основе он сможет принять взвешенное решение о предоставлении средств.

В общем случае имитационное моделирование Монте-Карло - это процедура, с помощью которой математическая модель определения какого-либо финансового показателя (в нашем случае NPV) подвергается ряду имитационных прогонов с помощью компьютера. В ходе процесса имитации строятся последовательные сценарии с использованием исходных данных, которые по смыслу проекта являются неопределенными, и потому в процессе анализа полагаются случайными величинами. Процесс имитации осуществляется таким образом, чтобы случайный выбор значений из определенных вероятностных распределений не нарушал существования известных или предполагаемых отношений корреляции среди переменных. Результаты имитации собираются и анализируются статистически, с тем, чтобы оценить меру риска.

Первая стадия в процессе анализа риска - это создание прогнозной модели. Такая модель определяет математические отношения между числовыми переменными, которые относятся к прогнозу выбранного финансового показателя. В качестве базовой модели для анализа инвестиционного риска обычно используется модель расчета показателя NPV

.

Использование этой формулы в анализе риска сопряжено с некоторыми трудностями. Они заключаются в том, что при генерировании случайных чисел, годовой денежный поток выступает как некое случайное число, подчиняющееся определенному закону распределения. В действительности же это совокупный показатель, включающий множество компонент рассмотренных в предыдущих публикациях. Этот совокупный показатель изменяется не сам по себе, а с учетом изменения объема продаж. То есть ясно, что он коррелирован с объемом. Поэтому необходимо тщательно изучить эту корреляцию для максимального приближения к реальности.

Общая прогнозная модель имитируется следующим образом. Генерируется достаточно большой объем случайных сценариев, каждый из которых соответствует определенным значениям денежных потоков. Сгенерированные сценарии собираются вместе и производится их статистическая обработка для установления доли сценариев, которые соответствуют отрицательному значению NPV. Отношение таких сценариев к общему количеству сценариев дает оценку риска инвестиций.

Распределения вероятностей переменных модели (денежных потоков) диктуют возможность выбора величин из определенных диапазонов. Такие распределения представляют собой математические инструменты, с помощью которых придается вес всем возможным результатам. Этим контролируется случайный выбор значений для каждой переменной в ходе моделирования.

Необходимость применения распределения вероятностей обусловлена попытками прогнозирования будущих событий. При обычном анализе инвестиций используется один тип распределения вероятности для всех переменных, включенных в модель анализа. Такой тип называют детерминированным распределением вероятности, и он придает всю вероятность одному значению. При оценке имеющихся данных аналитик ограничен выбором единственного из множества возможных результатов или расчетом сводного показателя. Затем аналитик должен принять, что выбранное значение обязательно реализуется, то есть он придает выбранному наиболее обоснованным образом показателю с единственным значением вероятность, равную 1. Поскольку такое распределение вероятности имеет единственный результат, итог аналитической модели можно определить на основании всего одного расчета (или одного прогона модели).

В анализе рисков используется информация, содержащаяся в распределении вероятности с множественными значениями. Именно использование множественных значений вместо детерминированных распределений вероятности и отличает имитационное моделирование от традиционного подхода.

Определение случайных переменных и придание им соответствующего распределения вероятности является необходимым условием проведения анализа рисков. Успешно завершив эти этапы, можно перейти к стадии моделирования. Однако непосредственный переход к моделированию будет возможен только в том случае, если будет установлена корреляция в системе случайных переменных, включенных в модель. Под корреляцией понимается случайная зависимость между переменными, которая не носит строго определенного характера, например, зависимость между ценой реализации товара и объемом продаж.

Наличие в модели анализа коррелированных переменных может привести к серьёзным искажениям результатов анализа риска, если эта корреляция не учитывается. Фактически наличие корреляции ограничивает случайный выбор отдельных значений для коррелированных переменных. Две коррелированные переменные моделируются так, что при случайном выборе одной из них другая выбирается не свободно, а в диапазоне значений, который управляется смоделированным значением первой переменной.

Хотя очень редко можно объективно определить точные характеристики корреляции случайных переменных в модели анализа, на практике имеется возможность установить направление таких связей и предполагаемую силу корреляции. Для этого применяют методы регрессионного анализа. В результате этого анализа рассчитывается коэффициент корреляции, который может принимать значения от -1 до 1.

Стадия "прогонов модели" является той частью процесса анализа риска, на которой всю рутинную работу выполняет компьютер. После того, как все допущения тщательно обоснованы, остается только последовательно просчитывать модель (каждый пересчет является одним "прогоном") до тех пор, пока будет получено достаточно значений для принятия решения (например, более 1000).

В ходе моделирования значения переменных выбираются случайно в границах заданных диапазонов и в соответствии с распределениями вероятностей и условиями корреляций. Для каждого набора таких переменных вычисляется значение показателя эффективности проекта. Все полученные значения сохраняются для последующей статистической обработки.

Для практического осуществления имитационного моделирования можно рекомендовать пакет "Risk Master", разработанный в Гарвардском университете. Генерирование случайных чисел этот пакет осуществляет на основе использования датчика псевдослучайных чисел, которые рассчитываются по определенному алгоритму. Особенностью пакета является то, что он умеет генерировать коррелированные случайные числа.

Окончательной стадией анализа рисков является обработка и интерпретация результатов, полученных на стадии прогонов модели. Каждый прогон представляет вероятность события, равную

p = 100 : n,

где p - вероятность единичного прогона, %;

n - размер выборки.

Например, если количество случайных прогонов равно 5000, то вероятность одного прогона составляет

p = 100 : 5000 = 0,02 %.

В качестве меры риска в инвестиционном проектировании целесообразно использовать вероятность получения отрицательного значения NPV. Эта вероятность оценивается на основе статистических результатов имитационного моделирования как произведение количества результатов с отрицательным значением и вероятности единичного прогона. Например, если из 5000 прогонов отрицательные значения NPV окажутся в 3454 случаях, то мера риска составит 69.1%.


Практическая часть


Задание для расчетов:

Инвестиционный проект имеет следующие ожидаемые показатели:


Годы

Доходы (поступления), тыс. у. д. ед. 

Расходы, тыс. у. д. ед. 

Ставка дисконта

инвестиционные

эксплуатационные

1997

3000

20

1998

1000

20

1999

800

300

15

2003

1000

500

15

2004

1200

3000

500

10

2005

1500

300

10

2006

2000

300

10

2007

2000

300

10


Определить срок окупаемости проекта по доходам, приведенным к условиям 1997 года.


Решение:

Для того, чтобы рассчитать срок окупаемости проекта нам необходимо сначала произвести дисконтирование доходов. Дисконтирование доходов проводится с помощью финансовых таблиц, результат дисконтирования, так называемый «Множитель дисконтирования» приведен нами в таблице 1.

Таблица 1

Дисконтирование денежного потока


Период

Денежный поток

Доходы

Множитель дисконтирования

Дисконти-рованный денежный поток

Дисконти-рованные доходы

1

2

3

4

5 = 2 х 4

6 = 3 х 4

1997

-3000

0

0,833

-2499

-2499

1998

-1000

0

0,694

-694

-694

1999

500

800

0,658

329

526,4

2003

500

1000

0,572

286

572

2004

-2300

1200

0,621

-1428,3

745,2

2005

1200

1500

0,564

676,8

846

2006

1700

2000

0,523

889,1

1046

2007

1700

2000

0,467

793,9

934


Исходя из данных таблицы 1, видим, что за 5 лет компания окупит 1843,6 тыс. у. д. ед. из вложенных, в 1997 г., 2499 тыс. у. д. ед. (с учетом дисконтирования).

Затем просчитаем, какая часть шестого года необходима компании, чтобы покрыть оставшиеся 655,4 тыс. у. д. ед. (2499 – 1843,6). Для этого необходимо разделить 655,4 на дисконтированный денежный поток за шестой год.

Таким образом, срок окупаемости проекта по доходам, приведенным к условиям 1997 года, составляет 5,8 лет.


Список использованной литературы


1.                 Финансовые инвестиции и риск. Киев, Торгово-издат. бюро. BHV, 1999

2.                 А. Мертенс. Инвестиции. - Киев: Киевское инвестиционное агенство, 2003.

3.                 Бланк И.А. Стратегия и тактика управления финансами. - Киев: “АДЕФ-Украина”, 2000.

4.                 Шарп У., Александер Г., Бейли Д. Инвестиции. М.: Инфра-М, 2004.

5.                 Балабанов И.Т. Риск-менеджмент. - М.: Финансы и статистика, 1996.

6.                 Вітличний К.М., Наконечний С.В. Ризик у менеджменті. - К.: Борисфен-М, 1996.

7.                 Кейн Э. Экономическая статистика и эконометрия. Введение в количественный экономический анализ. Пер. с англ. - М.: Статистика, 1977.

8.                 Риски в современном бизнесе / П.Г. Грабовый, С.Н. Петрова, С.И. Полтавцев и др. - М.: Аланс, 1994.


Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.